
To Link or not to Link? That is a Watch List!1

Robin Coutelier # �2

TU Wien, Vienna, Austria3

Abstract4

The two-watched literal scheme is a powerful method used in state-of-the-art SAT solvers to reduce5

the number of clauses checked during Boolean constraint propagation. In this paper, we explore the6

representation of watch lists using a linked list data structure. We explain why this representation7

intuitively has advantages over the traditional array-based representation. We then empirically8

evaluate the performance of this representation and explain why it is not used in practice when com-9

bined with the blocker optimization. Both paradigms were implemented in the NapSAT SAT solver.10

Based on the implementation process, we detail difficulties raised by a linked list representation.11

Experimenting with this alternative representation shows insights into cache behaviors. However,12

we conclude that it should not be used for general-purpose SAT solvers.13

2012 ACM Subject Classification Automated Reasoning, Constraint and logic programming14

Keywords and phrases Watcher Lists, SAT, CDCL15

Digital Object Identifier 10.4230/LIPIcs.POS.2024.116

Supplementary Material NapSAT (Source Code GitHub): https://github.com/RobCoutel/NapSAT17

Acknowledgements We thank the reviewers for their valuable feedback. As a reviewer pointed18

out, a similar approach was presented in [1] and [7]. This work is therefore not novel, but rather19

an independent re-discovery of an existing method. The author acknowledges support from the20

ERC Consolidator Grant ARTIST 101002685; the TU Wien Doctoral College TrustACPS; the21

FWF SpyCoDe SFB projects F8504; the WWTF Grant ForSmart 10.47379/ICT22007. NapSAT22

is a project started at the University of Liège under the supervision of Prof. Pascal Fontaine and23

continued at the TU Wien under the supervision of Prof. Laura Kovács. We thank the latter for24

proofreading the paper.25

1 Introduction26

Modern SAT solvers are based on Conflict Driven Clause Learning (CDCL) [9]. During a27

typical execution of the CDCL algorithm, most of the computation time is spent on Boolean28

constraint propagation (BCP). BCP searches for literals that can be implied by the current29

assignment and a clause via unit propagation. There may be a large number of clauses to30

inspect during the propagation of a literal ℓ. To reduce this number, the two watched literals31

scheme was introduced [7]. As the name suggests, the idea is to watch each clause with32

two literals ℓ1, ℓ2. Each literal ℓ is associated with a watch list WL(ℓ), which contains all33

the clauses watched by ℓ. Provided that certain invariants are maintained on the watched34

literals, this allows one to only check the clauses in the list WL(¬ℓ) when propagating ℓ,35

greatly reducing the number of clause visits during CDCL.36

This research was conducted without the knowledge of the literature on linked watch lists.37

Reviewers pointed out that this idea is not novel and has been documented in [1] but was38

experimented on in [7] before. In this paper, we explore for a third time the representation39

of watch lists using a linked list data structure. We evaluate our work with a practical40

implementation in the NapSAT SAT solver. We detail the implementation difficulties41

raised by the linked list representation and empirically evaluate the performance of using42

watch lists via arrays and linked lists. We conclude that the linked list representation is not43

suitable for general applications.44

© Robin Coutelier;
licensed under Creative Commons License CC-BY 4.0

Pragmatics of SAT.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robin.coutelier@tuwien.ac.at
https://doi.org/10.4230/LIPIcs.POS.2024.1
https://github.com/RobCoutel/NapSAT
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 To link or not to link?

C0

· s0 b0

C1

· s1 b1

C2

· s2 b2

C3

· s3 b3

ℓ4 ℓ1 . . . ℓ1 ℓ2 . . . ℓ3 ℓ1 . . . ℓ2 ℓ4 . . .

Figure 1 Representation of clauses in NapSAT. Clauses are stored as a fixed size structure
containing a pointer to the literals, the size s of the clause, and a blocker literal b.

2 NapSAT Background45

We assume that the reader is familiar with the CDCL algorithm and the basic data structures46

used in SAT solvers [4,7]. In this section, we introduce the data structures used in NapSAT47

relevant to understanding the rest of the paper.48

NapSAT is a CDCL-based SAT solver written in C++. The code is available on GitHub1
49

and GitLab2, and consists of approximately ∼ 5, 800 loc, among which the core corresponds50

to ∼ 2, 100 loc3. NapSAT supports different variations of chronological backtracking [3]. In51

this paper, however, we will only consider the classical non-chronological variant, as it is the52

most common in practice.53

NapSAT is an experimental solver that is not intended to compete with state-of-the-art54

solvers yet. The author therefore acknowledges that some techniques and representations may55

not be standard and comparable to more sophisticated solvers. However, most arguments56

presented in this paper are general enough to be applied to more advanced solvers. In the57

future, we plan to integrate the methods suggested by the reviewers to improve the NapSAT.58

We shall mark discussion on other solvers in a “remark” environment.59

In NapSAT, literals are represented as 32-bits unsigned integers whose least significant60

bit indicates the polarity. Clauses are stored as a fixed-size structure containing a pointer61

to the literals, the size s of the clause, and a blocker literal b. The blocker must be in the62

clause and is used to quickly check if the clause is satisfied. Each clause takes 16 bytes of63

memory (8 for the pointers to literals, 4 for the size, and 4 for the blocker.). All clauses are64

stored in a contiguous vector, allowing us to identify them with a 32-bits unsigned integer65

instead of a 64-bits pointer. Figure 1 illustrates the representation of NapSAT clauses. We66

assume that the watched literals are the first two literals in the clause as in [1, 4, 7].67

▶ Remark 1. A main difference between NapSAT and state-of-the-art solvers is the location68

of the blockers. In NapSAT, the blocker is stored in the clause data structure, while in69

state-of-the-art solvers, the blocker is stored in the watch list [2,4]. The advantage of storing70

the blocker in the clause is that it allows one to share it between the two watch lists. However,71

since most state-of-the-art solvers seem to agree on storing the blocker in the watch list,72

we will also implement and evaluate this representation in NapSAT in the future. In the73

following, we consider the data structures used in NapSAT but discuss how our arguments74

can be applied to different techniques.75

1 https://github.com/RobCoutel/NapSAT
2 https://gitlab.uliege.be/smt-modules/sat-library
3 as of commit df5a9ca4

https://github.com/RobCoutel/NapSAT
https://gitlab.uliege.be/smt-modules/sat-library

Robin Coutelier 1:3

WL

v1

¬v1

. . .

ℓ1

¬ℓ1

. . .

ℓ2

¬ℓ2

. . .

C0 C1 C2 C5

C1 C3

C0

· s0 b0

C1

· s1 b1

C2

· s2 b2

C3

· s3 b3

C4

· s4 b4

C5

· s5 b5

C6

· s6 b6

ℓ4 ℓ1 . . . ℓ1 ℓ2 . . . ℓ3 ℓ1 . . . ℓ2 ℓ4 . . . ℓ3 ℓ5 . . . ℓ3 ℓ1 . . . ℓ5 ℓ4 . . .

Figure 2 Array-based representation of watch lists. The watch list of ℓ1 is {C0, C1, C2, C5} and
the watch list of ℓ2 is {C1, C3}.

3 Watch Lists Representations76

3.1 Array-Based Representation77

The traditional representation of watch lists is an array of pointers to an array of references78

to clauses (potentially with blockers). For example, Figure 2 shows the watch lists of ℓ1 and79

ℓ2. The watch list of ℓ1 is [C0, C2, C1, C5] and is simply represented as an array of indices to80

the clauses. There exist variations of this representation, such as the use of pointers to the81

clauses instead of indices, as in CaDiCaL [2].82

For this paper, we will consider indices as on Figure 2. This representation has the83

advantage of being very simple and flexible. It is easy to implement and does not complicate84

the maintenance of the code base.85

The complexity of removal of an arbitrary element in the list is O(n), where n is the86

number of clauses in the watch list. However, the solver seldom removes arbitrary clauses87

from the list. More often, a clause is removed as it is inspected during propagation. In88

this case, the complexity is O(1) since we know the index of the clause in the watch list.89

There are two main approaches to removing an element from a list. Either (i) we swap the90

clause with the last clause in the list and decrement the size of the list, or (ii) we shift all91

the elements after the clause to the left, as in MiniSat [4]. Both approaches are sensible,92

since most of the time, the propagation will continue until the end, and the shifting naturally93

happens during the propagation. In the array-based implementation of NapSAT, we use94

the first approach (i). Watching a new clause is done in O(1) time if the watch list is not95

full, and O(n) otherwise, by simply pushing the clause at the end of the list (maybe after96

reallocation if the list is full).97

3.2 Linked List Representation98

When using linked watch lists, we remove one level of indirection. The watch list of a literal ℓ99

is now a simple reference to one of the clauses watched by ℓ. The clause data structure is now100

enhanced with two clause references, one for each watched literal. Exploring the watch list101

POS 2024

1:4 To link or not to link?

WL

v1

¬v1

. . .

ℓ1

¬ℓ1

. . .

ℓ2

¬ℓ2

. . .

ℓ4 ℓ1 . . .

ℓ1 ℓ2 . . .

ℓ3 ℓ1 . . .

C0

· s0 b0

·

·

C1

· s1 b1

·

·

C2

· s2 b2

·

·

C3

· s3 b3

·

·

C4

· s4 b4

·

·

C5

· s5 b5

·

·

C6

· s6 b6

·

·

Figure 3 Representation of watch lists using the linked list data structure. The watch list of ℓ1

is {C0, C1, C2, C5} and the watch list of ℓ2 is {C1, C3}.

of a literal ℓ now only requires following the first pointer of the clause if ℓ is the first watched102

literal, and the second pointer otherwise. This representation is shown in Figure 3. Clauses103

are now 24 bytes long, however, this space is saved from the list of references, compared to104

the array-based representation.105

Similarly to the array representation, removal of an arbitrary clause from the list is O(n),106

but removal during propagation is O(1). It simply requires connecting the previous clause107

to the next clause in the list. Doing this efficiently and elegantly is however not trivial since108

the connection might be either with the first or the second pointer of the previous clause.109

For example, in Figure 3, if the solver removes C1 from the watch list of ℓ1, we connect the110

second pointer of C0 to C2 since ℓ1 is the second watched literal of C0 and the first watched111

literal of C1. Watching a new clause C by ℓ is always done in O(1) time, by connecting C112

to WL(ℓ) and updating WL(ℓ) to C, thereby pushing C at the front of the list.113

Why linked lists? Using linked lists has several advantages over the array-based represen-114

tation. First, it allows us to reduce the dereference level by one. Indeed, there is no longer115

a need for a pointer to the array of clause references. A reference to the first clause in the116

list is sufficient. Furthermore, in NapSAT, when exploring the list, the clause must be117

dereferenced anyway, there does not seem to be an extra cost of using this technique.118

▶ Remark 2. The previous statement is however not true when using the blocker technique119

as in MiniSAT [4] or CaDiCaL [6] where the blockers are stored in the watch lists. A120

blocked clause does not need to be dereferenced. In that regard, comparing linked lists and121

arrays in NapSAT should yield better results than comparing linked lists and arrays in122

other solvers. Since linked lists perform worse than arrays in NapSAT (Section 4), we can123

expect that the difference would be even more significant in other solvers.124

Second, it is more memory efficient. When elements are moved from one watch list to125

another, the array-based representation might require to reallocate memory in the destination126

list, and some memory might be wasted in the origin list. With linked lists, the memory is127

allocated during the creation of the clause, and the only lost memory is the pointers at the128

end of the list (which are not larger than the field remembering the size of the array). A129

simple and not very rigorous evaluation with Valgrind [8] on 10 problems with 150 variables130

from the uniform random 3-SAT satisfiable problems of SATLIB [5] (uf150-01.cnf to131

uf150-010.cnf) showed us that the linked list scheme uses about 13% less memory than the132

Robin Coutelier 1:5

Table 1 Intuitive comparison of the array and linked list representation of watch lists.

Aspect Array Linked list
Dereference level 2 levels (−) 1 level (+)

Memory usage Extensible (−) Fixed (+)
Insertion O(1) or O(n) (−) O(1) (+)

Arbitrary removal O(n) (=) O(n) (=)
Removal during propagation O(1) (=) O(1) (=)

Bookkeeping overhead Low (+) High (−)
Code complexity Low (+) Medium (−)

array-based scheme. We do not desire to make any strong claim about this, nor spend more133

time on this evaluation, but it is an interesting observation. Furthermore, the additional cost134

of adding two 32 bits integers to the clause data structure is negligible. Trying to artificially135

double the size of the clauses (32 bytes) using the alignas keyword in C++, without any136

benefit, had only a limited impact on the runtime of the solver.137

▶ Remark 3. The PicoSAT paper [1] observes a similar save in memory for the linked list138

representation.139

Finally, singly linked lists can easily be extended to doubly linked lists that allow O(1)140

removal of any clause in the list. This could be interesting in a context where clauses are141

often removed by the user.142

Implementation complications. The main difficulty of implementing a linked list scheme,143

aside from the necessary bookkeeping, is simplifying the clause set. Indeed, the array-based144

approach allows having a clause in more than two watch lists at a time, and then cleaning it145

up in post-processing. This is not possible with the linked list representation. In particular,146

NapSAT supports different backtracking strategies that maintain different invariants on the147

watched literals [3]. This makes the implementation of the linked list representation more148

complex.149

Table 1 summarizes the comparison of the observations made in this section. We denote150

by (+) (resp. (−)) when a feature benefits (resp. harms) the respective representation, and151

(=) when the feature is equivalent in both representations.152

4 Empirical Evaluation153

Figure 4 shows the difference of runtime between both implementations4 of watch lists154

in NapSAT. Our experiments were conducted on the random 3-SAT instances of the155

SATLIB [5] with 250 variables. While the measurements were conducted on a single core of156

an Intel Core i7-10750H of a laptop with 16GB of DDR4 RAM, the results are significant157

enough to assert that they are not due to noise and that the linked list representation is158

significantly slower than the array-based representation: measured at 2.21 for SAT instances159

and 2.91 for UNSAT instances.160

Note that the entropy in the results is also because changing the representation modifies161

the behavior of the solver. In particular, the watch lists change order differently in both162

implementations. When using linked lists, the removal of an element in the list is stable, that163

is, the order of the list does not change. However, when removing an element in the array164

4 commits 0f300b57 and df5a9ca4 for linked lists and array respectively

POS 2024

1:6 To link or not to link?

100 101 102

Time (s) with array, avg: 6.8s

100

101

102

Ti
m

e
(s

) w
ith

 li
nk

ed
-li

st
, a

vg
: 1

5.
0s

(a) SAT instances. The linked list representation
runs on average 2.21 times longer than the array
implementation.

101 102

Time (s) with array, avg: 17.9s

101

102

Ti
m

e
(s

) w
ith

 li
nk

ed
-li

st
, a

vg
: 5

2.
2s

(b) UNSAT instances. The linked list representation
runs on average 2.91 times longer than the array
implementation.

Figure 4 Comparison of the runtime of the array and linked list representation of watch lists
on the random 3-SAT instances of the SATLIB with 250 variables. All runs were performed with
default options of NapSAT (non-chronological backtracking with clause deletion).

implementation, the last element of the list is moved to the position of the removed element.165

Furthermore, when inserting a clause in the watch list, the array implementation pushes it166

to the end of the list, while the linked list implementation pushes it to the beginning of the167

list. This has an impact on which conflicts are found by the solver. However, this effect is168

quasi-random, and we can observe similar trends on all sizes of the SATLIB.169

The Linked list and Array lines of Table 2 also show that the linked list scheme does170

not scale well. The runtime ratio increases with the size of the problems.171

5 Practical Difficulties of Using Linked Lists172

A seemingly insignificant drawback of the linked list scheme is that it is not possible to173

explore the watch list without dereferencing the pointer to the literals of the clause. Since174

the solver needs to know which branch to choose, it needs to know the order of the two175

watched literals. To do so, either a copy must be kept inside of the clause data structure,176

further increasing the bookkeeping overhead, or the literals must be dereferenced. This177

largely negates the advantage of the blocker. Indeed, when the blocker is satisfied, we wish178

to avoid checking the literals. However, in our linked list representation, this is not possible.179

▶ Remark 4. In the PicoSAT paper [1], it was suggested to use a bit in the link to store180

this information. For example, a link to the clause C in a watch list of literal ℓ would be181

marked with a bit set to 0 if ℓ is the first watched literal of C, and 1 otherwise. This would182

allow us to avoid dereferencing the literals. However, swapping literals in the clause is now183

a problem since we would need to update the other link as well.184

To test this claim, we have ensured that the literals were artificially dereferenced in185

NapSAT before checking the blocker. The results are shown in Table 2. We can see that186

the cost of dereferencing the literals is significant and is responsible for a nonnegligible part187

Robin Coutelier 1:7

Table 2 Comparison of the average runtime of the different watch list representations on the
uniform random 3-SAT instances of the SATLIB.

uf200 uuf200 uf225 uuf225 uf250 uuf250
Linked list 0.28 s 0.75 s 1.78 s 5.10 s 15.00 s 52.20 s

Array 0.20 s 0.44 s 1.10 s 2.63 s 6.80 s 17.92 s
Array with dereference 0.17 s 0.46 s 1.16 s 2.92 s 8.52 s 24.52 s

Table 3 Final comparison of the array and linked list representation of watch lists. Empirically,
the array representation is faster and easier to implement.

Aspect Array Linked list
Dereference level 2 levels (−) 1 level (+)

Memory usage Extensible (−) Fixed (+)
Bookkeeping overhead Low (+) High (−)

Code complexity Low (+) Medium (−)
Usefulness of blockers High (+) Low (−)

of the slowdown. However, there seems to be more to it. The rest of the performance188

drop is probably due to the increased bookkeeping overhead. For example, swapping the189

watched literals is a common practice in SAT solvers, and can be done in propagation with190

4 assembly instructions using xor operations without branching. However, in the linked list191

representation, we cannot simply swap the literals, we also need to conditionally update192

the clause references. The branching and the additional memory accesses slow down the193

propagation. This leads us to believe that copying the literals to avoid dereferencing them194

might not be a good idea. For further investigation, we would check the impact of the order195

of clauses in the lists on the runtime of the solver.196

▶ Remark 5. As opposed to this work, PicoSAT [1] results are more promising. It might be197

because PicoSAT does not use blockers, or because the linked list representation is more198

efficient in PicoSAT than in NapSAT. It would be interesting to investigate this further.199

6 Conclusion200

This paper studied the benefits and challenges of implementing watch lists using arrays and201

linked lists. Table 3 summarizes the comparison between both representations of watch202

lists. While linked lists have some merits, our experiments show that they do not pay off203

in practice. The blocker is such a powerful tool that saving a bit of memory is not worth204

negating its benefits. We therefore do not recommend using linked lists for general-purpose205

SAT solvers.206

References207

1 Armin Biere. Picosat essentials. J. Satisf. Boolean Model. Comput., 4(2-4):75–97, 2008.208

URL: https://doi.org/10.3233/sat190039, doi:10.3233/SAT190039.209

2 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,210

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT211

Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department of212

Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.213

3 Robin Coutelier, Mathias Fleury, and Laura Kovács. Lazy reimplication in chronological214

backtracking. In To Appear in the proceeding of SAT, 2024.215

POS 2024

https://doi.org/10.3233/sat190039
https://doi.org/10.3233/SAT190039

1:8 To link or not to link?

4 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT, volume 2919216

of Lecture Notes in Computer Science, pages 502–518. Springer, 2003. doi:10.1007/217

978-3-540-24605-3_37.218

5 Holger H Hoos and Thomas Stützle. SATLIB: An Online Resource for Research on SAT.219

Sat, 2000:283–292, 2000.220

6 Norbert Manthey. Cadical modification–watch sat. SAT COMPETITION 2021, page 28,221

2021.222

7 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.223

Chaff: Engineering an Efficient SAT Solver. In DAC, pages 530–535. ACM, 2001. doi:224

10.1145/378239.379017.225

8 Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic226

binary instrumentation. In Proceedings of the ACM SIGPLAN 2007 Conference on Program-227

ming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007,228

pages 89–100. ACM, 2007. doi:10.1145/1250734.1250746.229

9 João P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm for230

satisfiability. In ICCAD, pages 220–227. IEEE Computer Society / ACM, 1996. doi:231

10.1109/ICCAD.1996.569607.232

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607

	1 Introduction
	2 NapSAT Background
	3 Watch Lists Representations
	3.1 Array-Based Representation
	3.2 Linked List Representation

	4 Empirical Evaluation
	5 Practical Difficulties of Using Linked Lists
	6 Conclusion

