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Abstract. The superposition calculus for reasoning in first-order logic
with equality relies on simplification orderings on terms. Modern satu-
ration provers use the Knuth-Bendix order (KBO) and the lexicographic
path order (LPO) for discovering redundant clauses and inferences. Im-
plementing term orderings is, however, challenging. While KBO compar-
isons can be performed in linear time and LPO checks in quadratic time,
using the best-known algorithms for these orders is not enough. Indeed,
our experiments show that for some examples, term ordering checks may
use about 98% of the overall proving time. The reason for this is that
some equalities that cannot be ordered can become ordered after apply-
ing a substitution (post-ordered), and we have to check for post-ordering
repeatedly for the same equalities. In this paper, we show how to improve
post-ordering checks by introducing a new data structure called term or-
dering diagrams, in short TODs, which creates an index for these checks.
We achieve efficiency by lazy modifications of the index and by storing
and reusing information from previously performed checks to speed up
subsequent checks. Our experiments demonstrate the efficiency of TODs.

1 Introduction

Superposition-based theorem provers commonly use simplification orderings on
terms to restrict their search space [17]. All top performing provers from the
last CASC competitions [25] – Vampire [11], iProver [8], E [23], and Zipper-
position [28] – use the Knuth-Bendix order (KBO) [7] and some also use the
lexicographic path order (LPO) [6]. There is a linear-time KBO algorithm [15]
and a quadratic-time LPO algorithm [18], so implementing ordering comparisons
does not seem to be challenging.

We denote by ≻ the simplification order used by the superposition calculus,
and we call an ordering comparison the operation of checking whether s ≻ t
holds for two terms s and t. Although there are very efficient algorithms for
ordering comparison, surprisingly, it can easily take up a significant part of a
theorem prover’s running time. For example, ordering comparison is required in
the following frequently used inference rule called demodulation:
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l ≈ r C[lσ]
C[rσ]

where (1) lσ ≻ rσ,
(2) C[lσ] ≻ (l ≃ r)σ,

between a unit clause consisting of an equality l ≈ r and a clause C[lσ] containing
a subterm lσ, where σ is a substitution. We can remove the right premise C[lσ]
after applying this rule, so demodulation is very valuable for keeping the search
space smaller.
Post-ordering checks with unordered equalities. Demodulation is applied
only when the side condition lσ ≻ rσ is satisfied. Based on properties of simpli-
fication orders, this side condition always holds when l ≻ r. A more challenging
case is when l ̸≻ r and r ̸≻ l (we say that l ≈ r is unordered), and we repeat-
edly apply demodulation with the same left premise l ≈ r and different right
premises. We call the comparison of lσ and rσ a post-ordering check to empha-
size that l ≈ r is not pre-ordered. The number of required post-ordering checks
can be very large. For example, if we have a unit equality problem (which is not
unusual in algebraic reasoning) and generate 106 clauses, the number of demod-
ulation inferences can be of the order of 1012. Even if only 1% of all equalities
are unordered, we still can have 1010 post-ordering comparisons. Further, while
KBO has a linear time algorithm [15], it still takes a significant time compared
to other algorithms used by a theorem prover (such as matching or unification).
Improving post-ordering checks could thus further improve equational reasoning.
Equality retrieval with post-ordering checks. This paper focuses on re-
trieving equalities that become ordered after applying a substitution. This is
used in implementing the superposition and demodulation rules, after the re-
trieval of candidate equalities of the form l ≈ r, for applying these rules with
the same left-hand side l. This can be formulated as the following problem.

The Post-Ordering Problem
Given a finite set E of unordered equalities l ≈ r1, . . . , l ≈ rn with the same
left-hand side and a substitution σ, retrieve from E equalities that satisfy
lσ ≻ riσ.

We can be interested in retrieving one, some, or all equalities. When this problem
is used in demodulation, one normally first uses an index that retrieves a term
l, and only then unordered equalities l ≈ r1, . . . , l ≈ rn that form the set E . In
this case, all equalities in E have the same left-hand side. We assume that the
same set E of equalities can be repeatedly used for retrieval, interleaved with
operations of adding new equalities to E or removing existing equalities from it.
As such, the post-ordering problem becomes a term indexing problem [24], where
the substitution σ is a query substitution.
Motivating Example. Let us illustrate the post-ordering problem using a KBO
with a constant weight function. Let l and r1 denote the terms f(x, y) and f(y, x),
respectively, and let l ≈ r1 be an equality. Given a substitution σ, checking
whether lσ ≻ r1σ holds involves computing term weights and comparing symbol
precedences of f(x, y)σ and f(y, x)σ recursively. Some of these operations are,
however, independent of the substitution σ applied. For example, the weight of
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f(x, y)σ is the same as the weight of f(y, x)σ independently of σ, so the weight
check can be dropped. Simple analysis shows that checking lσ ≻ r1σ can be
simplified to an equivalent ordering check xσ ≻ yσ. Note that this analysis has
to be performed only once, so all consequent checks of f(x, y)σ′ ≻ f(y, x)σ′ for
any substitution σ′ can be immediately reduced to checking xσ′ ≻ yσ′.

We can do even better when we perform several consecutive checks. For
example, suppose that we retrieve equalities in the same order and the next
equality after f(x, y) ≈ f(y, x) is f(x, y) ≈ f(x, x). Then, if during the first
check we established yσ ≻ xσ, we can immediately conclude f(x, y)σ ≻ f(x, x)σ.
Our contributions. This paper is based on ideas explained in the example
above: (i) simplify ordering checks using the definition of KBO or LPO, and (ii)
use the previous computation history to get rid of redundant checks. We bring
the following contributions.

– We introduce a new data structure, called the term ordering diagram (TOD),
in Section 3.

– We describe TOD transformations in Section 4. These transformations use
KBO/LPO properties and produce equivalent, yet more efficient TODs. 4

– We propose an equality retrieval algorithm in Section 5 for solving the post-
ordering problem using TODs. To the best of our knowledge, our work pro-
vides the first algorithm for efficiently solving post-ordering checks. It is also
the first paper discussing runtime specialization of LPO checks, previously
used for KBO ordering checks in [22] and earlier in [27,21] for other opera-
tions.

– We evaluate our work by implementing term ordering diagrams in Vampire
and report on our results in Section 6. The use of TODs in forward demodu-
lation, that is, demodulation applied to newly generated clauses from previ-
ously stored unit equalities [11], has significantly contributed to Vampire’s
success in the unit equality division (UEQ) of the CASC competition [25] in
2024.

2 Preliminaries

We work with a fixed signature F consisting of a finite set of function symbols
with associated arities and consider an alphabet of variables V; variables are
not part of the signature. Function symbols are denoted by f, g, and variables
by x, y, possibly with indices. Terms are defined in the standard way over F ∪
V; variable-free terms are called ground. A substitution σ is a mapping from
variables to terms, such that the set {x | σ(x) ̸= x} of variables is finite. We call
a simplification ordering any ordering ≻ on terms that is

(1) well-founded: there is no infinite decreasing chain of terms s1 ≻ s2 ≻ . . .,
(2) stable under substitutions: if s ≻ t then sσ ≻ tσ,

4 Detailed proofs can be found in the extended version of this paper [5].
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(3) monotonic: for f ∈ F and terms s1, . . . , sn, s, t such that s ≻ t, we have
f(s1, . . . , si−1, s, si, . . . , sn) ≻ f(s1, . . . , si−1, t, si, . . . , sn),

(4) satisfies the subterm property: if t is a proper subterm of s, then s ≻ t.

A precedence relation, denoted by ≫, is a total order on the signature F . Given
a precedence relation, a weight function is a function w from F to non-negative
integers such that (i) w(c) > 0 for all constants c and (ii) if w(f) = 0 and f
is unary, then f is the greatest element w.r.t. ≫. We will refer to w(f) as the
weight of f . We denote by w0 the smallest weight of constants. For p ∈ F ∪ V,
we write |t|p to denote the number of occurrences of a variable or a symbol p in
a term t. For example, |f(x, x)|f = 1, |f(x, x)|x = 2 and f(x, x)y = 0. Let P(V)
be the set of linear expressions over V with integer coefficients. The weight of a
term t, denoted by |t|, is a linear expression in P(V) defined as:

|t| def=
∑
f∈F

|t|f · w(f) +
∑
x∈V

|t|x · x

A substitution σ can also be considered as a mapping from linear expressions to
linear expressions, as follows:

σ(α0 + α1 · x1 + . . . + αn · xn) def= α0 + α1 · |x1σ| + . . . + αn · |xnσ|.

For example, if w(f) = 2, w(a) = 1 and σ = {x 7→ a}, then |f(x, x)| = 2 · x + 2
and σ(|f(x, x)|) = σ(2 · x + 2) = 2 · |xσ| + 2 = 4. It is not hard to argue that |tσ|
= σ(|t|). Let e ∈ P(V) be a linear expression. We call a substitution σ grounding
for e if σ(e) does not contain variables and |xσ| ≥ w0 for all x ∈ V such that
|xσ| is a constant. We write e > 0 if σ(e) > 0 for all grounding substitutions σ
for e. We write e ≳ 0 if σ(e) ≥ 0 for all grounding substitution σ for e.

The Knuth-Bendix order (KBO), denoted by ≻kbo, is parameterized by a
precedence relation ≫ and a weight function w. For terms s, t, we have s ≻kbo t
if:

(K1) |s| − |t| > 0, or
(K2) |s| − |t| ≳ 0, s = f(s1, ..., sn), t = g(t1, ..., tm) and f ≫ g, or
(K3) |s| − |t| ≳ 0, s = f(s1, ..., sn), t = f(t1, ..., tn) and there exists 1 ≤ i ≤ n

such that si ≻kbo ti and sj = tj for all 1 ≤ j < i.

The lexicographic path order (LPO), denoted by ≻lpo, is parameterized by a
precedence relation ≫. Let s, t be terms with s = f(s1, ..., sn). We write s ≻lpo t
if:

(L1) t = f(t1, ..., tn) and there exists 1 ≤ i ≤ n s.t. sj = tj for 1 ≤ j < i,
si ≻lpo ti, and s ≻lpo tk for i < k ≤ n, or

(L2) t = g(t1, ..., tm), f ≫ g and s ≻lpo ti for 1 ≤ i ≤ m, or
(L3) si ⪰lpo t for some 1 ≤ i ≤ n.

It is known that every instance of LPO and KBO is a simplification order.
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3 Term Ordering Diagram – TOD

To solve the post-ordering problem, we introduce the term ordering diagram
(TOD) data structure (Definition 1). For retrieving equalities using TODs, we
will need the following two operations on substitutions.

1. Given two terms s and t, compare sσ and tσ using ≻. We call the expression
s >? t a term comparison. We consider a substitution σ as a mapping from
term comparisons to the set of values {>, =,≱}, as follows:

σ(s >? t) def=

 >, if sσ ≻ tσ,
=, if sσ = tσ,
≱, otherwise.

2. Given a linear expression e, check the sign of the linear expression σ(e). We
call the expression e ≥? 0 a positivity check. We consider a substitution σ as
a mapping from positivity checks to the set of values {>, ≥,≱}, as follows:

σ(e ≥? 0) def=

 >, if σ(e) > 0,
≥, if σ(e) ≳ 0,
≱, otherwise.

Note that positivity checks are only defined for KBO.

Before defining TODs, we illustrate how we solve the post-ordering problem.

Example 1. Let σ be a query substitution and l
def= f(x, y), r1

def= f(y, x) be terms.
The rooted directed graph of Figure 1(a) illustrates the two key operations for
retrieving the equality l ≈ r1 if f(x, y)σ ≻ f(y, x)σ holds. We first evaluate
the term comparison f(x, y) >? f(y, x) in the top node. If σ(f(x, y) >? f(y, x))
evaluates to >, the computation proceeds to the bottom node, which contains
the equality l ≈ r1, which is then included in the result of the retrieval.

The evaluation of σ(f(x, y) >? f(y, x)) in Figure 1(a) uses KBO, which in
turn computes the linear expression |f(x, y)| − |f(y, x)|, performs a positivity
check and proceeds with one of the subcases (K1)–(K3). The linear expression
is 0 as both terms have the same number of f , x, and y symbols. Hence, the
positivity check always results in ≥, which rules out subcase (K1). Similarly,
(K2) is violated, as f(x, y) and f(y, x) both have f as top-most symbol.

Note that (K1) and (K2) are not applicable regardless of the query substitu-
tion σ, hence we can simplify f(x, y)σ ≻ f(y, x)σ into (x ≻ y∨(x = y∧y ≻ x))σ.
As (x = y ∧ y ≻ x)σ is false, this further simplifies into (x ≻ y)σ. The term
comparison f(x, y) >? f(y, x) of Figure 1(a) is thus turned into the (cheaper)
term comparison x >? y shown in Figure 1(b).

Let us now consider an additional equality l ≈ r2, with r2
def= f(x, x). Fig-

ure 1(c) displays the steps of retrieving l ≈ r2 if f(x, y)σ ≻ f(x, x)σ holds.
Similarly to Figure 1(a), the term comparison f(x, y) >? f(x, x) is simplified
using KBO properties into (y − x > 0 ∨ (y − x ≳ 0 ∧ y ≻ x))σ.
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f(x, y) >? f(y, x)

l ≈ r1

>

(a)

x >? y

l ≈ r1

>

(b)

f(x, y) >? f(x, x)

l ≈ r2

>

(c)

y − x ≥? 0

l ≈ r2

y >? x>

≥

>

(d)

Fig. 1. Equality retrievals, where l
def= f(x, y), r1

def= f(y, x) and r2
def= f(x, x). (a) and

(b) show retrieval of l ≈ r1, where (a) contains a term comparison l >? r1 and (b)
is a simplified version of (a) with term comparison x >? y. Further, (c) and (d) show
retrieval of l ≈ r2, where (c) contains term comparison l >? r2 and (d) is a simplified
version of (c) with a positivity check y − x ≥? 0 and term comparison y >? x.

The simplified computation is depicted in Figure 1(d), where we first perform
a positivity check y − x ≥? 0, corresponding to deciding which of σ(y − x) > 0
or σ(y − x) ≳ 0 hold in the above formula, then performing at most one more
term comparison. The computation of Figure 1(d) is more efficient than the
one in Figure 1(c) because we avoid the computation of the linear expression
|f(x, y)| − |f(x, x)| and as well as some intermediate term comparisons. ❏

Example 1 shows that interleaving term comparisons and positivity checks
can simplify, and hence speed up, term ordering checks. Let us now give for-
mal definitions. We will use standard graph-theoretic notions related to directed
acyclic graphs (dags), trees, and paths in a graph.

Definition 1 (Term Ordering Diagram – TOD). A term ordering diagram
(TOD) is a directed acyclic graph T which contains five kinds of nodes:

(1) A single root node, so that every node is reachable from the root node. The
root node has one outgoing edge.

(2) A single exit node, reachable from every node.
(3) A term comparison node is labeled by a term comparison s >? t and has

three outgoing edges, labeled by >, =, and ≱.
(4) A positivity check node is labeled by a positivity check e ≥? 0 and has three

outgoing edges, labeled by >, ≥, and ≱.
(5) A success node is labeled by an equality l ≈ r and has one outgoing edge.❏

We collectively refer to the term comparison nodes and positivity check nodes as
evaluation nodes. The idea is that we evaluate the substitution in these nodes and
follow the node label resulting from the evaluation. Note that the exit node and
its incoming edges are usually omitted when displaying a TOD (as in Figure 1).
To retrieve equalities towards solving the post-ordering problem, we traverse a
TOD as follows.

Definition 2 (TOD Traversal). Let σ be a query substitution and T a TOD.
The T traversal for σ is the path in T from its root to its exit node so that:
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f(x, y) >? f(y, x)

l ≈ r1

f(x, y) >? f(x, x)

l ≈ r2

>

=

≱

>

(a)

x >? y

l ≈ r1

y − x ≥? 0

l ≈ r2

y >? x>

≱

>

≥

>

(b)

Fig. 2. Retrieving multiple equalities, where l
def= f(x, y), r1

def= f(y, x) and r2
def= f(x, x).

(1) If the path contains a term comparison node labeled by s >? t, then the path
also contains the outgoing edge of this node labeled by σ(s >? t).

(2) If the path contains a positivity check node labeled by e ≥? 0, then the path
also contains the outgoing edge of this node labeled by σ(e ≥? 0).

The success set of the T traversal for σ is the set of labels of all success nodes
on this path; we also refer to it as the success set of σ in T . For any non-exit
node in a traversal, we refer to its next edge and next node.

For a node n labeled by c, where c is either a term comparison or a positivity
check, we say that the node n forces an edge label ℓ, if for every query substitution
σ, if the T traversal for σ reaches n, then σ(c) = ℓ. ❏

We use a TOD to perform term ordering checks only when it is necessary. Key
to this are TOD transformations (Section 4): given a TOD T1, we transform T1
into an equivalent TOD T2, so that T2 can be traversed faster, making ordering
checks cheaper. The efficiency gain in T2 traversal comes by replacing T1 checks
with less expensive ones or removing redundant checks of T1. Importantly, our
TOD transformations on T1 are performed while we traverse T1 for a specific
query substitution, as shown in Example 2.

Example 2. Consider again l
def= f(x, y), r1

def= f(y, x) and r2
def= f(x, x). Let σ be a

query substitution. Figure 2(a) shows the sequence of steps for retrieving l ≈ r1
if (l ≻ r1)σ, and then retrieving l ≈ r2 if (l ≻ r2)σ. Similarly to Figures 1(a)
and (c), we can modify Figure 2(a) into its more efficient version displayed in
Figure 2(b). However, in Figure 2(b) we implement stronger TOD modifications:
in the (second) retrieval of l ≈ r2 we use information from the (first) retrieval
of l ≈ r1. For example, if xσ = yσ, the evaluation of x >? y in Figure 2(b)
results in neither l ≈ r1 nor l ≈ r2 retrieved. This evaluation is more efficient
compared to its equivalent version in Figure 2(a) where both f(x, y) >? f(y, x)
and f(x, y) >? f(x, x) have to be evaluated to obtain the same result. ❏

Examples 1–2 show that we transform a TOD while we are traversing it.
This is done for two reasons. (i) First, term comparisons may involve expensive
computations, for example, when we deal with linear expressions (as shown in
Example 1). When we compute a linear expression, we modify the TOD to have
a corresponding positivity check node, so that on the next traversal, if we reach
the same node, we do not compute the linear expression again. (ii) Second, our
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n1

n n2

ℓ′

ℓ

n1

n n2

ℓ′

ℓ

(a)

n1

n

ℓ

n1

n n2

ℓ

(b)

Fig. 3. Generic transformations on TODs: (a) redundant node removal, where node n
forces label ℓ; and (b) node replication, where n2 is an exact copy of a non-exit node n
that has multiple incoming edges.

transformations are lazy – we only modify nodes in a TOD when we reach them
during traversal. The reason for this is that modifying TODs is expensive due
to KBO/LPO checks; hence, these modifications should not be performed for
nodes that will never be visited. Despite modifying TODs, we do not change
their semantics: our TOD transformations (Section 4) yield equivalent TODs.
Definition 3 (TOD Equivalence). Two TODs T1 and T2 are equivalent if for
every substitution σ, the success sets of σ in T1 and T2 coincide. ❏

4 TOD Transformations

We explain our TOD transformations via a sequence of subgraph replacements
and show how TOD equivalences are preserved. Replacements are performed
while visiting specific nodes n in the TOD, depending on the node label. As
such, some replacements are specific to KBO/LPO constraints (Figures 4–5),
whereas others are generic (Figure 3), independent of the ordering. Figure 3
summarizes our generic TOD transformations, as detailed below:
– Figure 3(a) corresponds to a redundant node removal, where n forces ℓ. Simply

removing nodes might violate TOD properties: as n may have no incoming
edges, the existence of a single root node in a TOD is not fulfilled. In such
cases, we also remove n from the TOD. Generally, if a redundant node removal
introduces a node with no incoming edges, we repeatedly remove such nodes.

– Figure 3(b) shows a node replication, where n is a non-exit node with multiple
incoming edges and n2 is the exact copy of n with the same outgoing edges.

Our KBO and LPO transformations on TODs are shown Figures 4 and 5, re-
spectively. Here, we denote by s a term f(s1, . . . , sk), also written as f(s̄), with
k ≥ 0. Similarly, t is a term g(t1, . . . , tm), also written as g(t̄), with m ≥ 0. Note
that in Figure 5, if f ≫ g and m = 0, the node n1 replaces the top node; con-
versely, in case of g ≫ f and k = 0, the node n3 replaces the top node; finally,
if f = g and k = 0, then the node n2 replaces the top node.

Theorem 1 (Correctness of TOD Transformations). (1) Every sequence
of TOD transformations terminates. (2) Every TOD transformation of Fig-
ures 3–5 preserves TOD equivalence.
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f(s̄) >? g(t̄)

n1 n2 n3

> = ≱

|f(s̄)| − |g(t̄)| ≥? 0

n1 n2 n3

> ≥ ≱

|f(s̄)| − |g(t̄)| ≥? 0

n1 n2 n3

> ≥ ≱|f(s̄)| − |g(t̄)| ≥? 0

s1 >? t1

. . .

sk >? tk

n1 n2 n3

>

≥

≱

>

=

≱

>

=

≱

>
= ≱

Case 1: f ≫ g Case 3: g ≫ f

Case 2: f = g

Fig. 4. KBO transformations on TODs.

Proof. (1) For proving termination, we introduce a well-founded order on TODs
and show that every transformation replaces a TOD by a smaller one. In the
proof, we use (well-founded) finite multiset extensions of (well-founded) orders.

We first introduce a mapping µ from nodes to finite multisets of terms as:

(i) If n is a term comparison node s >? t, then µ(n) is the multiset {s, t}.
(ii) For any other node n, we define µ(n) to be the empty multiset.

Let us also define an order >µ on nodes as follows: n2 >µ n1 if µ(n2) is greater
than µ(n1) in the multiset extension of the order ≻ on terms. Note that >µ is
well-founded, since µ embeds it in the multiset extension of a well-founded order.

For every path π in a TOD, we denote by µ(π) the multiset consisting of
elements µ(n) for all nodes n in π. We define an ordering, also denoted by >µ,
on paths as follows: π2 >µ π1 if µ(π2) is greater than µ(π1) in the multiset
extension of the order >µ on nodes. Again, >µ is well-founded, since it can be
embedded to the multiset extension of a well-founded order.

Finally, for a TOD T , we denote by µ(T ) the multiset consisting of all multi-
sets µ(π), where π is a path from the root node in T . We also define an ordering
>µ on TODs by letting T2 >µ T1 if µ(T2) > µ(T1). Using the same arguments
as before, we conclude that >µ on TODs is well-founded, too.

For every transformation apart from node replication that changes a TOD T
to a TOD T ′, we have that T >µ T ′, which implies termination. The proof is by
routine inspection of transformations. For example for the case f = g of the LPO
transformations (last transformation of Figure 5), we replace a path with a term
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f(s̄) >? g(t̄)

n1 n2 n3

> = ≱

s1 >? t1

f(s̄) >? t2 s2 >? t2 s2 >? g(t̄)

. . . . . . . . .

f(s̄) >? tk sk >? tk sk >? g(t̄)

n1n2n3

> = ≱

>= ≱
> = ≱

>
=≱

>= ≱ > = ≱ >
=≱

>= ≱ >
=≱ > =≱

f(s̄) >? t1

. . .

f(s̄) >? tm

n1 n2 n3

> = ≱

> = ≱

>
= ≱

s1 >? g(t̄)

. . .

sk >? g(t̄)

n1 n2 n3

> = ≱

> = ≱

> = ≱

Case 1: f ≫ g Case 3: g ≫ f

Case 2: f = g

Fig. 5. LPO transformations on TODs.

comparison node f(s̄) >? f(t̄) by a finite number of paths, so that every new term
comparison node on these paths contains a comparison of a pair of terms strictly
smaller in the multiset order than the multiset {f(s̄), f(t̄)}. Another example is
the redundant node removal of Figure 3. This transformation replaces on some
paths nodes n1, n, n2 by n1, n2, which results in a smaller multiset.

Finally, we note that node replication results in a TOD containing exactly
the same multiset of paths, but it can only be applied a finite number of times.
(2) TOD equivalence. The TOD transformations of Figure 4–5 preserve TOD
equivalence by properties of KBO/LPO. Redundant node removal in Figure 3(a)
ensures equivalence by the “forces” relation (Definition 2). Node replication in
Figures 3(b) preserves equivalence since the set of TOD paths does not change.

❏

5 TOD Retrieval and Maintenance

TOD is a data structure intended to be an index [24] for retrieval of equalities,
which become ordered by the query substitution. In this section, we describe the
three main operations on the TOD index: insertion, deletion, and retrieval. An
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interesting feature of TODs is that the main modifications of them occur not
during insertion but during retrieval. As mentioned in Section 3, we modify the
TOD T lazily, when we traverse it for a query substitution σ, resulting in an
equivalent TOD T ′. The new TOD T ′ is less expensive to traverse, since it either
removes checks performed at nodes (redundant node removal) or replaces them
with simpler ones (all transformations of Figures 4–5). Subsequent retrievals are
then performed on the TOD T ′ instead of T .

. . .

. . .

l >? r

l ≈ r

>
=

≱

Fig. 6. Insertion of l ≈ r

Index operations. The insertion of an
equality l ≈ r is simple: we insert a term
comparison node just before the exit node,
as shown in Figure 6.

The deletion of an equality l ≈ r is not
performed. Instead of doing the deletion,
we simply memorize that l ≈ r is to be
deleted. In practice, we do not even have
to do this, since the clause containing l ≈ r will be marked as deleted anyhow.

A retrieval from a TOD consists of traversal, possibly interleaved with TOD
transformations (Section 4). We next describe our TOD retrieval algorithm.
TOD retrieval algorithm. We introduce a notion meant to capture sufficient
conditions for the (expensive) “forced” relation 5 , in extension of Definition 2.

Definition 4 (Forcing function). Let σ be a substitution. We call a path π a
σ-path, if for every edge from a node n to a node n′ in it labeled by ℓ, (1) if n is a
term comparison node s >? t, then σ(s >? t) = ℓ, and (2) if n is a positivity check
node e ≥? 0, then σ(e ≥? 0) = ℓ. We call a partial function F from paths to edge
labels a forcing function if it has the following property. For every substitution
σ and every σ-path π = n0, . . . , ni, ni+1 from the root, if F (n0, . . . , ni) = ℓ, then
the edge in π from ni to ni+1 is labeled with ℓ. ❏

Our retrieval algorithm is parametrized by a forcing function F . During the
retrieval, we mark some nodes visited. Once a node n is marked visited, the path
from the root to n will never change. Initially, all nodes in a TOD are unvisited.
Let T be a TOD and σ a substitution. The traversal starts in the successor
of the root node and repeatedly applies steps shown in Figure 7. When we
describe the steps, we assume that during the traversal we already followed a
path π = n0, n1, . . . , nk, n leading to the current node n.

Let us now establish some properties of the algorithm, proving its correctness.

Lemma 1. If n is a visited node, there is a single path from the root to n.

Proof. When we make a node visited at step 3c of Figure 7, by induction we
can assume that nk already has this property. Since after this step there is only
one edge to n, and this edge is from nk, n satisfies this property. None of the
other steps adds an incoming edge to a visited node or changes the content of a
visited node, so n0, . . . , nk, n remains the only path to n. ❏
5 We discuss forcing functions implemented in Vampire in the extended version of

this paper [5].
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1. If n is the exit node, we terminate and return the success set of σ for T (the set of
all non-deleted equalities in success nodes visited during the traversal).

2. If n is a success node, we set n to the successor node of n. Alternatively, if we are
interested in only one candidate, we can terminate once we reach the first success
node with a non-deleted equality.

3. Let n be an unvisited evaluation node. If n has more than one incoming edge, we
first apply node replication so that the only incoming edge to n is from nk. Then,
(a) If F (π) = ℓ, we apply the transformation of Figure 3 (a).
(b) If any of the transformations of Figures 4 and 5 applies to n, we apply this

transformation.
(c) Otherwise, we mark n visited.

4. If n is a visited term comparison node containing s >? t, we follow the edge σ(s >? t)
from n.

5. If n is a visited positivity check node containing e ≥? 0, we follow the edge σ(e ≥? 0)
from n.

Fig. 7. Retrieval algorithm steps.

Lemma 2. Step 3a of Figure 7 transforms the TOD into an equivalent one.

Proof. By Lemma 1, there is only one path from the root to n. By Definition 4,
it follows that n forces ℓ, so this step is a special case of redundant mode removal
from Figure 3(a), which preserves TOD equivalence by Theorem 1. ❏

Lemma 3 (Termination). The retrieval algorithm terminates.

Proof. Straightforward by Lemma 2 and Theorem 1. Indeed, all transformations
made during the retrieval are special cases of TOD transformations, so we can
only make a finite number of them. All other steps of the algorithm either change
the current node to its successor in the TOD or mark an unvisited node as visited.
Since any TOD is a dag, we can only make a finite number of such steps. ❏

Lemma 4 (Correctness). The TOD T ′ resulting from the retrieval is equiva-
lent to the TOD T before the retrieval.

Proof. By Lemma 2, step 3a of Figure 7 is a special case of redundant node
removal. All other transformations in Figure 7 are special cases of TOD trans-
formations, which preserve equivalence by Theorem 1. ❏

Example 3. Consider the TOD in Figure 1(a). We perform retrieval on this TOD
using a KBO with constant weight function and a query substitution σ such that
xσ = yσ. The retrieval steps are shown in Figure 8. Initially, all nodes in the
TOD are unvisited. We highlight the path up to the current node in each sub-
diagram with blue, and denote visited nodes with a red striped background. Note
that the last node on the blue path is the current node n from the algorithm.
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f(x, y) >? f(y, x)f(x, y) >? f(y, x)

f(x, y) ≈ f(y, x)

>

0 ≥? 00 ≥? 0 x >? y y >? x

f(x, y) ≈ f(y, x)

>

≥

>

=

>

x >? yx >? y y >? x

f(x, y) ≈ f(y, x)

>

=

>

x >? yx >? yx >? y y >? x

f(x, y) ≈ f(y, x)

>

=

>

x >? y y >? xx >? yx >? y y >? x

f(x, y) ≈ f(y, x)

>

=

>

x >? yx >? yx >? y

f(x, y) ≈ f(y, x)

=

>

A B

C D

E F

3b

3a 3c

4 3a

Fig. 8. Retrieval with a query substitution σ such that xσ = yσ.

1. Starting with sub-diagram A of Figure 8, we use step 3b, applying case 2 of
the KBO transformations (see Figure 4).

2. In sub-diagram B, for the current path π we have that F (π) equals ≥, so we
apply redundant node removal (step 3a).

3. In sub-diagram C, the current node does not admit any transformations, so
we mark it visited (step 3c).

4. In sub-diagram D, σ(x >? y) is =, so we follow the edge labeled = (step 4).
5. In sub-diagram E, for the current path π we get that F (π) equals =, due to

σ(x >? y) being =. We apply redundant node removal and get to the exit
node denoted explicitly with a black disc (step 3a).

6. In sub-diagram F, we return from the retrieval with no equalities (step 1).

Suppose that, before further traversals, we insert the equality f(x, y) ≈
f(x, x) into the TOD in sub-diagram F of Figure 8. The resulting TOD is
shown in sub-diagram G of Figure 9, with a new term comparison node la-
beled f(x, y) >? f(x, x) and a new success node labeled f(x, y) ≈ f(x, x). The
> edge of the new term comparison node is connected to the new success node.
The = and ≱ edges of the new term comparison node, and the outgoing edge of
the success node are connected to a new exit node (not shown). We traverse the
TOD in sub-diagram G with a query substitution σ such that xσ ≻ yσ.

1. Starting from sub-diagram G of Figure 9, we follow the edge > (step 4),
mark the success node labeled f(x, y) ≈ f(y, x) visited (step 3c) and follow
its outgoing edge (step 2).

2. In sub-diagram H, we apply Case 2 of the KBO transformations (step 3b)
and mark the current node labeled y − x ≥? 0 visited (step 3c).
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x >? y

f(x, y) ≈ f(y, x)

f(x, y) >? f(x, x)x >? yx >? y

f(x, y) ≈ f(y, x)

f(x, y) >? f(x, x)

f(x, y) ≈ f(x, x)

>

=

≱

>

x >? y

f(x, y) ≈ f(y, x)

f(x, y) >? f(x, x)x >? yx >? y

f(x, y) ≈ f(y, x)f(x, y) ≈ f(y, x)

f(x, y) >? f(x, x)

f(x, y) ≈ f(x, x)

>

=

≱

>

x >? y

f(x, y) ≈ f(y, x)

y − x ≥? 0x >? yx >? y

f(x, y) ≈ f(y, x)f(x, y) ≈ f(y, x)

y − x ≥? 0y − x ≥? 0 x >? x

y >? xf(x, y) ≈ f(x, x)

>

=

≱

>

≥

> =

>

G H

I

4,3c,2

3b,3c

Fig. 9. Result of insertion of f(x, y) ≈ f(x, x) into the TOD of in sub-diagram F of
Figure 8, and retrieval steps from top-left TOD with query substitution σ s.t. xσ ≻ yσ.

3. In sub-diagram I, we follow the ≱ edge of the current node (step 5) and get
to the exit node.

4. We exit with a single equality f(x, y) ≈ f(y, x) (step 1). ❏

6 Evaluation

We implemented our equality retrieval approach using TOD in Vampire.
Prover setup. We considered twelve configurations of Vampire options for
reasoning using TOD, by taking Discount [2] or Otter [16] as saturation algo-
rithm (-sa discount/otter), KBO or LPO as term order (-to kbo/lpo), and
TOD variants using the new option -fdtod with values off/on/shared 6 for
using TODs in forward demodulation, where:

(1) off does not use TODs,
(2) on uses a separate TOD for each forward demodulator (see e.g. Figure 1),
(3) shared uses a shared TOD for each set of forward demodulators with the

same left-hand side (see e.g. Figure 2).

Benchmarks. We used version 8.2.0 of the TPTP library [26], which contains
25474 problems. We ignored problems where TODs are not used at all, resulting
in 9310 problems used for evaluation.
Hardware. We used compute nodes with AMD Epyc 7502 2.5GHz processors
and 1TB RAM. Each benchmark run relied on a single core and 16GB of memory.

6 The option values on and shared are implemented in the master and
term-ordering-diagrams branches of Vampire, respectively.
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Table 1. Number of problems solved by Vampire within 60s. The numbers in paren-
theses show the number of problems lost and won by TOD variants compared to off.

off on shared

Otter KBO 3250 (-0, +0) 3258 (-0, +8) 3261 (-0, +11)
LPO 3064 (-0, +0) 3083 (-1, +20) 3092 (-2, +30)

Discount KBO 3182 (-0, +0) 3194 (-1, +13) 3196 (-1, +15)
LPO 3016 (-0, +0) 3044 (-1, +29) 3058 (-1, +43)

Experimental summary. Table 1 shows the number of problems solved by
Vampire with a 60 seconds timeout. Our approach using TODs is better, re-
gardless of the term ordering (to) or the saturation algorithm (sa). Further,
Vampire shared proves theorems significantly faster than off.7

Experiments using TODs seem to reach the memory limit in more instances
than without TODs. For example in -sa otter -to lpo, 44 problems reach a
memory limit with shared, whereas only 14 do so when TODs are off. How-
ever, Vampire -fdtod off hits some difficult ordering checks and is unable to
generate huge clauses that consume a lot of memory.

Table 2 shows the proportion of machine instructions spent on forward de-
modulation and on entire runs, showcasing that we reduce the solving time of
the post-ordering problem. We used an instruction limit of 200 × 109 (approxi-
mately 60 seconds). We highlight the subset of results from Table 2 for problems
in the UEQ (unit equality) category of TPTP in Table 3. Post-ordering checks
in this category generally take up a more significant proportion of instructions.
In some cases, when using LPO without TODs, these checks even dominate the
number of instructions.

7 Related Work and Conclusion

We introduce the term ordering diagram (TOD) index to improve the efficiency
of term ordering checks. Our evaluation using Vampire shows significant im-
provement over naive term ordering checks.

Decidability and complexity of problems related to KBO and LPO are studied
in [18,9,10,20], complemented by efficient implementations [15,22,13]. In partic-
ular, in [22] each KBO ordering check is runtime specialized individually in one
step. We improve upon this by preprocessing ordering checks completely lazily.
Additionally, TODs allow algorithm specialization for an arbitrary number of
sequential ordering checks, including also for LPO. The open problem 9 of [19]
is a generalization of the post-ordering problem. Confluence trees, developed to
decide ground confluence of equational systems [1], are similar to TODs. Con-
fluence trees have also been adapted to ground reducibility checking [12]. Shared
rewriting avoids the post-ordering problem by caching the results of demodula-
tions in shared terms [14]. Similarly to term indexing structures, the efficiency
7 A more detailed evaluation can be found in the extended version of this paper [5].
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Table 2. Number of instructions spent on post-ordering checks and forward demod-
ulation compared to total instruction count. The first column describes the options,
and the next three display the number of instructions performed on parts of Vampire.
Columns 5–6 list the percentage of instructions spent on post-ordering checks and for-
ward demodulation, and the last column gives the number of forward demodulations.

Options # of instructions ×1012 Ratio to total # of ×106

PostOrd. Fw dem. Total PostOrd. Fw dem. Fw dem.

O
tt

er K
B

O off 73 174 1258 5.8% 13.9% 2598
on 34 142 1256 2.7% 11.3% 2714
shared 18 116 1255 1.4% 9.2% 2813

LP
O off 259 362 1292 20.0% 28.0% 1922

on 154 279 1286 12.0% 21.7% 2064
shared 98 213 1284 7.7% 16.6% 2238

D
is

co
un

t

K
B

O off 91 314 1272 7.2% 24.7% 3044
on 45 281 1258 3.6% 22.4% 3279
shared 37 272 1269 3.0% 21.4% 3520

LP
O off 214 417 1301 16.5% 32.1% 2376

on 115 354 1283 8.9% 27.6% 2768
shared 86 330 1294 6.7% 25.5% 3228

of term ordering diagrams is based on sharing information in indexed elements.
However, the insertion retrieval operations for term ordering diagrams are done
lazily, necessitated by the more expensive ordering comparison operations they
support. To the best of our knowledge, our TOD approach gives the first algo-
rithmic solution to efficient post-ordering checks.

Further work includes applying TODs to, for example, backward demod-
ulation, constrained superposition, subsumption demodulation [4], ground re-
ducibility [12], or ground joinability [3]. Extending our framework to other sim-
plification orders, such as the weighted path order (WPO) [29], is another task
for the future.
Acknowledgements. This research was funded in whole or in part by the
ERC Consolidator Grant ARTIST 101002685, the ERC Proof of Concept Grant
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6. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. Unpub-
lished manuscript (1980)

7. Knuth, D.E., Bendix, P.B.: Simple Word Problems in Universal Algebras. In:
Automation of Reasoning 2. Springer (1983). https://doi.org/10.1007/978-3-642-
81955-1 23

8. Korovin, K.: iProver — An Instantiation-Based Theorem Prover for First-Order
Logic (System Description). In: IJCAR (2008). https://doi.org/10.1007/978-3-540-
71070-7 24

9. Korovin, K., Voronkov, A.: Knuth-Bendix Constraint Solving Is NP-Complete. In:
ICALP (2001). https://doi.org/10.1007/3-540-48224-5 79

10. Korovin, K., Voronkov, A.: Orienting rewrite rules with the Knuth–Bendix
order. Information and Computation (2003). https://doi.org/10.1016/S0890-
5401(03)00021-X
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