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Abstract
Automated reasoners, such as SAT/SMT solvers and first-order provers, are be-
coming the backbones of rigorous systems engineering, being used for example
in applications of system verification, program synthesis, and cybersecurity. Au-
tomation in these domains crucially depends on the efficiency of the underlying
reasoners towards finding proofs and/or counterexamples of the task to be en-
forced. In order to gain efficiency, automated reasoners use dedicated proof rules
to keep proof search tractable. To this end, (variants of) subsumption is one of
the most important proof rules used by automated reasoners, ranging from SAT
solvers to first-order theorem provers and beyond.
It is common that millions of subsumption checks are performed during proof
search, necessitating efficient implementations. However, in contrast to proposi-
tional subsumption as used by SAT solvers and implemented using sophisticated
polynomial algorithms, first-order subsumption in first-order theorem provers
involves NP-complete search queries, turning the efficient use of first-order
subsumption into a huge practical burden.
In this paper we argue that the integration of a dedicated SAT solver opens up
new venues for efficient implementations of first-order subsumption and related
rules. We show that, by using a flexible learning approach to choose between
various SAT encodings of subsumption variants, we greatly improve the scalability
of first-order theorem proving. Our experimental results demonstrate that, by
using a tailored SAT solver within first-order reasoning, we gain a large speedup
in solving state-of-the-art benchmarks.
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1 Introduction
Most formal verification approaches use automated reasoners in their backend to, for
example, discharge verification conditions [1–3], produce/block counter-examples [4–7],
or enforce security and privacy properties [8–11]. All these approaches crucially depend
on the efficiency of the underlying reasoning procedures, ranging from SAT/SMT
solving [12–14] to first-order proving [15–18]. In this paper, we focus on effective
extensions of first-order theorem proving with SAT-based reasoning, improving the
state-of-the-art in proving first-order (program) properties.
Saturation-Based Theorem Proving. The leading algorithmic approach in first-
order theorem proving is saturation [16, 17]. While the concept of saturation is relatively
unknown outside of the theorem proving community, similar algorithms that are used
in other areas, such as Gröbner basis computation [19], can be considered examples of
saturation algorithms. The key idea in saturation theorem proving is to reduce the
problem of proving the validity of a first-order formula 𝐴 to the problem of establishing
unsatisfiability of ¬𝐴 by using a sound inference system. That is, instead of proving 𝐴,
we refute ¬𝐴, by selecting and applying inferences rules. In this paper, we focus on
saturation algorithms using the superposition calculus, which is the most commonly
used inference system for first-order logic with equality [20].
Saturation with Redundancy. During saturation, the first-order prover keeps a
set of usable clauses 𝐶1, . . . , 𝐶𝑘 with 𝑘 ≥ 0. This is the set of clauses that the prover
considers as possible premises for inferences. After applying an inference with one or
more usable clauses as premises, the consequence 𝐶𝑘+1 is added to the set of usable
clauses. The number of usable clauses is an important factor for the efficiency of proof
search. A naive saturation algorithm that keeps all derived clauses in the usable set
would not scale in practice. One reason is that first-order formulas in general yield
infinitely many consequences. For example, consider the clause

¬positive (𝑥) ∨ positive (reverse (𝑥)), (1)

where 𝑥 is a universally quantified variable ranging over the algebraic datatype list,
where list elements are integers; positive is a unary predicate over list such that
positive (𝑥) is valid iff all elements of 𝑥 are nonnegative integers; and reverse is a unary
function symbol reversing a list. As such, clause (1) asserts that the reverse of a list 𝑥

of nonnegative integers is also a list of nonnegative integers (which is clearly valid).
Note that, when having clause (1) as a usable clause during proof search, the clause
¬positive (𝑥)∨positive (reverse𝑛 (𝑥)) can be derived for any 𝑛 ≥ 1 from clause (1). Adding
¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)) to the set of usable clauses would, however, blow
up the search space unnecessarily. This is because ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥))
is a logical consequence of clause (1), and hence, if a formula 𝐴 can be proved using
¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)), then 𝐴 is also provable using clause (1). Yet,
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storing ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)) as usable formulas is highly inefficient as 𝑛

can be arbitrarily large.
To avoid such and similar cases of unnecessarily increasing the set of usable formulas

during proof search, first-order theorem provers implement the notion of redundancy [21],
by extending the standard superposition calculus with term/clause ordering and literal
selection functions. These orderings and selection functions are used to eliminate so-
called redundant clauses from the search space, where redundant clauses are logical
consequences of smaller clauses w.r.t. the considered ordering. In our example above,
the clause ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)) would be a redundant clause as it is
a logical consequence of clause (1), with clause (1) being smaller (i.e. using fewer
symbols) than ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)). As such, if clause (1) is already
a usable clause, saturation algorithms implementing redundancy should ideally not
store ¬positive (𝑥) ∨positive (reverse𝑛 (𝑥)) as usable clauses. To detect and reason about
redundant clauses, saturation algorithms with redundancy extend the superposition
inference system with so-called simplification rules. Simplification rules do not add new
formulas to the set of (usable) clauses in the search space, but instead simplify and/or
delete redundant formulas from the search space, without destroying the refutational
completeness of superposition: if a formula 𝐴 is valid, then ¬𝐴 can be refuted using
the superposition calculus extended with simplification rules. In our example above,
this means that if ¬𝐴 can be refuted using ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)), then
¬𝐴 can be refuted in the superposition calculus extended with simplification rules,
without using ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)) but using clause (1) instead.

Ensuring that simplification rules are applied efficiently for eliminating redundant
clauses is, however, not trivial. In this paper, we show that SAT-based approaches can
effectively identify the application of simplification rules during saturation, improving
thus the efficiency of saturation algorithms with redundancy.
Subsumption for Effective Saturation. While redundancy is a powerful criterion for
keeping the set of clauses used in proof search as small as possible, establishing whether
an arbitrary first-order formula is redundant is as hard as proving whether it is valid.
For example, in order to derive that ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)) is redundant
in our example above, the prover should establish (among other conditions) that it is
a logical consequence of (1), which essentially requires proving based on superposition.
To reduce the burden of proving redundancy, first-order provers implement sufficient
conditions towards deriving redundancy, so that these conditions can be efficiently
checked (ideally using only syntactic arguments and no proofs). One such condition
comes with the notion of subsumption, yielding one of the most impactful simplification
rules in superposition-based theorem proving [22] and SAT solving [23].

The intuition behind first-order subsumption is that a (potentially large) instance
of a clause 𝐶 does not convey any additional information over 𝐶, and thus it should be
avoided to have both 𝐶 and its instance in the set of usable clauses; to this end, we say
that the instance of 𝐶 is subsumed by 𝐶. More formally, a clause 𝐶 subsumes another
clause 𝐷 if there is a substitution 𝜎 such that 𝜎(𝐶) is a submultiset of 𝐷1. In such a
case, subsumption removes the subsumed clause 𝐷 from the clause set. To continue
our example above, a unit clause positive (reverse𝑚(𝑥)), with 𝑚 ≥ 1, would prevent us

1we consider a clause 𝐶 as a multiset of its literals
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from deriving ¬positive (𝑥) ∨ positive (reverse𝑛 (𝑥)) for any 𝑛 ≥ 𝑚, and hence eliminate
an infinite branch of clause derivations from the search space.

To detect possible inferences of subsumption and related rules, state-of-the-art
provers use a two-step approach [24]: (i) retrieve a small set of candidate clauses, using
literal filtering methods, and then (ii) check whether any of the candidate clauses
represents an actual instance of the rule. Step (i) has been well researched over the years,
leading to highly efficient indexing solutions [24–26]. Interestingly, step (ii) has not
received much attention, even though it is known that checking subsumption relations
between multi-literal clauses is an NP-complete problem [27]. Although indexing in
step (i) allows the first-order prover to skip step (ii) in many cases, the application of (ii)
in the remaining cases may remain problematic (due to NP-hardness). For example,
while profiling subsumption in the world-leading theorem prover Vampire [16], we
observed subsumption applications, and in particular calls to the literal-matching
algorithm of step (ii), that consume more than 20 seconds of running time. Given that
millions of such matchings are performed during a typical first-order proof attempt, we
consider such cases highly inefficient, calling for improved solutions towards step (ii).
In this paper we address this demand and show that a tailored SAT-based encoding can
significantly improve the literal matching, and thus subsumption, in first-order theorem
proving. We also advocate the flexibility of SAT solving for variants of subsumption,
in particular when combining subsumption with resolution.
Our Contributions. We bring the following main contributions.
(1) We propose a generic SAT-based encoding for capturing potential applications of
both subsumption and subsumption resolution in first-order theorem proving (Sections 4-
5). A solution to our SAT-based encoding gives a concrete application of subsumption
and/or subsumption resolution, allowing the first-order prover to apply that instance
of subsumption (resolution) as a simplification rule during saturation. Moreover, our
encoding is complete in the sense that any instance of subsumption (resolution) is a
model of our SAT problem (Theorems 4, 6 and 7).

(2) We tailor encodings of subsumption and subsumption resolution for effective SAT-
based redundancy elimination (Section 6). Importantly, we adjust unit propagation
and conflict resolution in SAT solving towards efficient handling of subsumption and
subsumption resolution (Section 6.1). Our resulting SAT-based redundancy approaches
are directly integrated in saturation (Section 7), without changing the underlying
design of efficient saturation.

(3) We establish a flexible learning approach to choose between encodings with different
properties. We detail how to train decision trees to obtain the best complexity-efficiency
trade-off in choosing encodings for subsumption resolution (Section 8). As part of an
empirical study, we analyse the utility of solving subsumption and subsumption resolu-
tion problems for a large portion of our computation budget. We introduce a method
to choose an appropriate cutoff threshold and stop the SAT search prematurely. We
empirically show that solely solving simple instances of subsumption and subsumption
resolution is not a good solution, even with an educated timeout strategy.

(4) We implemented our SAT-based redundancy approach as a new SAT solver in
the Vampire theorem prover. We empirically evaluate our approach on the standard
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benchmark library TPTP (Section 9). Our experiments demonstrate that using SAT
solving for deciding and applying subsumption and subsumption resolution brings clear
improvements in the saturation process of first-order proving, for example, improving
the (time) performance of the prover by a factor of 1.36 when both subsumption and
subsumption resolution are enabled.

Extension of Previous Works. This paper is an extended version of the conference
papers “First-Order Subsumption via SAT Solving” [28] and “SAT-Based Subsumption
Resolution” [29] published at FMCAD 2022 and CADE 2023, respectively.

In Section 5, we extend the SAT-based subsumption framework of [28] to subsump-
tion resolution and complemented [29] with unifying support for both subsumption and
subsumption resolution. In Section 6 we extend the SAT solving algorithms of [28, 29]
to solve both subsumption and subsumption resolution. As such, Sections 4-6 unify the
approaches of [28, 29] into a flexible technique for SAT-based redundancy checking in
saturation. Our paper therefore adjusts the texts of [28, 29] and extends their results
with formal theoretical arguments and proofs.

In addition, this paper brings the following new contributions when compared to
our papers [28, 29]. First, we introduce a symbolic approach to combine SAT-based
encodings with learning heuristics to dynamically select the most promising encoding
during run-time (Section 8.2). Second, we expand preprocessing via pruning techniques
and use our SAT solver only on hard(er) problems (Section 6.2). Here, we provide a
faster multilayered filter to detect unsatisfiable instances before they even reach the SAT
engine. Third, we bring in an empirically motivated approach to trade completeness of
SAT-based subsumption (resolution) for computation time, by cutting off early the
harder instances of subsumption and subsumption resolution (Section 8.1). We show
that subsuming simple clauses is not enough in practice, strengthening our argument
for more scalable algorithms in the context of redundancy elimination.

2 Preliminaries
We consider standard multi-sorted first-order logic, where we support all standard
Boolean connectives ∧, ∨, →, ¬ and quantifiers ∀ and ∃. We assume that the language
contains the logical constants ⊤ and ⊥ for always true and always false formulas,
respectively. Let V denote the set of first-order variables. For the purpose of our work,
we also use B to denote a set of Boolean variables, where Boolean variables (constants,
atoms) are written as 𝑏. Throughout the paper, we write 𝑥, 𝑦, 𝑧 for first-order variables;
𝑐, 𝑑 for constants; 𝑓 , 𝑔 for function symbols; and 𝑝, 𝑞 for predicates. The set of first-
order terms T consists of variables, constants, and function symbols applied to other
terms; we denote terms by 𝑡. First-order atoms, or simply just atoms, are predicates
applied to terms. Atoms and negated atoms are also called first-order literals, and
denoted by ℓ, 𝑠, 𝑚. First-order clauses, or simply just clauses, are disjunctions of
literals, denoted by 𝐶, 𝐷, 𝑆, 𝑀. For convenience, the literals of a clause will often be
written with subscripted lower case letters, e.g., 𝑆 = 𝑠1 ∨ 𝑠2 ∨ · · · ∨ 𝑠𝑘 . For simplicity,
the notation used throughout this paper may possibly use indices.
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A clause that consists of a single literal is called a unit clause. Clauses are often
viewed as multisets of literals; that is, a clause 𝑆 = 𝑠1 ∨ 𝑠2 ∨ . . . ∨ 𝑠𝑘 is considered to be
the multiset {𝑠1, 𝑠2, . . . , 𝑠𝑘}.

An expression 𝐸 is a term, literal, or clause. We denote the set of variables occurring
in the expression 𝐸 by V (𝐸). A substitution is a partial function 𝜎 : V → T ; we
occasionally write it as a set of mappings 𝜎 = {𝑥1 ↦→ 𝑡1, . . . , 𝑥𝑛 ↦→ 𝑡𝑛}. The function
𝜎 is extended to arbitrary expressions 𝐸 by simultaneously replacing each variable 𝑥

in 𝐸 by 𝜎(𝑥), for all variables 𝑥 on which 𝜎 is defined. We say an expression 𝐸1 can
be matched to an expression 𝐸2 if there exists a substitution 𝜎 such that 𝜎(𝐸1) = 𝐸2.
Additionally, we make the distinction between positive and negative polarity matches.
A positive polarity match 𝜎 matches two literals 𝑠 and 𝑚 such that 𝜎(𝑠) = 𝑚, whereas
a negative (or opposite) polarity match would complement one of the literals (i.e.,
𝜎(𝑠) = ¬𝑚).
Saturation and Subsumption. Most first-order theorem provers, see e.g. [15–17],
implement saturation with redundancy, using the superposition calculus [22]. A clause 𝑆

subsumes a clause 𝑀 iff there exists a substitution 𝜎 such that 𝜎(𝑆) ⊑ 𝑀, where 𝑆

and 𝑀 are treated as multisets of literals and ⊑ is the multiset inclusion operator.
Subsumption is a simplification rule that deletes subsumed clauses from the search
space during saturation. Subsumption gives a powerful basis for other simplification
rules. For example, subsumption resolution [16, 17], also known as contextual literal
cutting or self-subsuming resolution, is the combination of subsumption with binary
resolution. On the other hand, subsumption demodulation [30] results from combining
subsumption with demodulation/rewriting.
SAT Solving. Modern SAT solvers, see e.g. [31–33], are based on conflict-driven clause
learning (CDCL) [34], with the core procedures to decide, unit-propagate, and resolve-
conflict. The SAT solver maintains a partial assignment of truth values to the Boolean
variables. Unit propagation (also called Boolean constraint propagation), that is unit-
propagate in a SAT solver, propagates clauses w.r.t. the partial assignment. If exactly
one literal 𝑙 in a clause remains unassigned in the current assignment while all other
literals are false, the solver sets 𝑙 to true to avoid a conflict. The two-watched-literal
scheme [35] is the standard approach for efficient implementation of unit propagation.

If no propagation is possible, the solver may choose a currently unassigned variable 𝑏

and set it to true or false; hence, decide in SAT solving. The number of variables in
the current assignment that have been assigned by decision is called the decision level.

If all literals in a clause are false in the current assignment, the solver enters conflict
resolution, via the resolve-conflict block of SAT solving. If the current decision level is
zero, the conflict follows unconditionally from the input clauses and the solver returns
“unsatisfiable” (UNSAT). Otherwise, by analysing how the literals in the conflicting
clause have been assigned, the SAT solver may derive and learn a conflict lemma, undo
some decisions, and continue solving.
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3 Subsumption and Subsumption Resolution
In this section we formally define subsumption and subsumption resolution. These
concepts yield important deletion/simplification rules during saturation.

Definition 1 (Subsumption) A clause 𝑆 subsumes a clause 𝑀 iff there exists a substitution
𝜎 such that

𝜎(𝑆) ⊑ 𝑀, (2)
where ⊑ denotes multiset inclusion. We call 𝑆 the side premise of subsumption, and 𝑀 the
main premise of subsumption.

Subsumed clauses are redundant [22] and can thus be deleted from the search
space without compromising the completeness of the saturation algorithm. Removing
subsumed clauses 𝑀 from the search space 𝐹 is implemented through a simplifying rule,
checking condition (2) over pairs of clauses (𝑆, 𝑀) from 𝐹. To check condition (2) for
a clause pair (𝑆, 𝑀), every literal in 𝑆 is matched to some literal in 𝑀; if a compatible
set of matches is found and no literal in 𝑀 is matched more than once, then 𝑀 can be
removed from 𝐹.

Example 1 Consider the clause 𝑀 B 𝑝(𝑔(𝑐, 𝑑)) ∨ ¬𝑝( 𝑓 (𝑑)) ∨ ¬𝑞(𝑦1).
• 𝑆1 B 𝑝(𝑔(𝑥1, 𝑥2)) ∨ ¬𝑞(𝑥3) subsumes 𝑀, as witnessed by the substitution 𝜎 = {𝑥1 ↦→

𝑐, 𝑥2 ↦→ 𝑑, 𝑥3 ↦→ 𝑦1}.
• 𝑆2 B 𝑝(𝑔(𝑥1, 𝑥2)) ∨ ¬𝑞(𝑥1), does not subsume 𝑀. This is because the first literal of 𝑆2

imposes 𝑥1 ↦→ 𝑐, while the second literal requires 𝑥1 ↦→ 𝑦1 in order to have 𝑀 subsumed.
Note that the substitution is applied only to the side premise; we do not unify the clauses.

• 𝑆3 B 𝑝(𝑔(𝑥1, 𝑑)) ∨ 𝑝(𝑔(𝑐, 𝑥2)) ∨ ¬𝑞(𝑥3) does not subsume 𝑀, because only set inclusion
can be satisfied, rather than multi-set inclusion.

When subsumption (2) for a clause pair (𝑆, 𝑀) fails, it might still be possible to
simplify the clause 𝑀 by deleting one of its literals. Subsumption resolution, referred
to as SR in the sequel, aims exactly to remove one redundant literal from a clause and
is defined below.

Definition 2 (Subsumption Resolution) Clauses 𝑆 and 𝑀 are the side premise and main
premise of subsumption resolution SR, respectively, iff there is a substitution 𝜎, a set of literals
𝑆′ ⊆ 𝑆, and a literal 𝑚′ ∈ 𝑀 such that

𝜎(𝑆′) = {¬𝑚′} and 𝜎(𝑆 \ 𝑆′) ⊆ 𝑀 \ {𝑚′}, (3)
implying that 𝑀 can be replaced by 𝑀 \ {𝑚′}. Subsumption resolution SR is hence the rule

𝑆 ��𝑀 (SR).
𝑀 \ {𝑚′}

We indicate the deletion of a clause 𝑀 by drawing a line through it, that is (��𝑀).
We refer to the literal 𝑚′ of 𝑀 as the resolution literal of SR. Intuitively, subsumption
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resolution is binary resolution followed by subsumption of one of its premises by the
conclusion. However, by combining two inferences into one it can be treated as a
simplifying inference, which is advantageous from the perspective of efficient proof
search.

Example 2 Consider clause 𝑀 B 𝑝(𝑔(𝑐, 𝑑)) ∨ ¬𝑝( 𝑓 (𝑑)) ∨ ¬𝑞(𝑦1) from Example 1.
• 𝑆4 B ¬𝑝(𝑔(𝑥1, 𝑥2)) ∨ ¬𝑞(𝑥3) allows subsumption resolution with main premise 𝑀 using

the substitution 𝜎 = {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑, 𝑥3 ↦→ 𝑦1}. Under this substitution, we have 𝜎(𝑆4) =
¬𝑝(𝑔(𝑐, 𝑑))∨¬𝑞(𝑦1). We resolve 𝜎(𝑆4) and 𝑀 to obtain the conclusion ¬𝑝( 𝑓 (𝑑))∨¬𝑞(𝑦1),
which subsumes 𝑀. We thus have

¬𝑝(𝑔(𝑥1, 𝑥2)) ∨ ¬𝑞(𝑥3) 𝑝(𝑔(𝑐, 𝑑)) ∨ ¬𝑝( 𝑓 (𝑑)) ∨ ¬𝑞(𝑦1) (SR).¬𝑝( 𝑓 (𝑑)) ∨ ¬𝑞(𝑦1)
• 𝑆5 B ¬𝑝(𝑔(𝑥1, 𝑑)) ∨ ¬𝑝(𝑔(𝑐, 𝑥2)) ∨ ¬𝑞(𝑥3) allows subsumption resolution with 𝑀 with

the same substitution 𝜎 and conclusion as used for 𝑆4. In contrast to 𝑆4, two literals of
𝑆5 are mapped to the resolution literal.

• 𝑆6 B 𝑝( 𝑓 (𝑥1)) ∨ 𝑞(𝑥2) does not allow subsumption resolution with 𝑀, because at most
one opposite polarity match is permitted.

• 𝑆7 B 𝑝(𝑔(𝑐, 𝑥1)) ∨ 𝑝( 𝑓 (𝑥1)) ∨ ¬𝑝( 𝑓 (𝑥2)) does not allow subsumption resolution with 𝑀.
While we can find a candidate resolution literal by matching 𝑝( 𝑓 (𝑥1)) to ¬𝑝( 𝑓 (𝑑)), there
is no possible match for ¬𝑝( 𝑓 (𝑥2)) since same-polarity matches to the resolution literal
are not permitted.

• 𝑆8 B 𝑝(𝑔(𝑐, 𝑥1))∨𝑝( 𝑓 (𝑥1))∨𝑟 (𝑥2) does not allow subsumption resolution with 𝑀, because
there is no possible match for 𝑟 (𝑥2).

We note that subsumption and subsumption resolution are NP-complete prob-
lems [24, 27]. In this paper, we advocate the use of state-of-the-art SAT solving and
provide tailored SAT encodings for subsumption and subsumption resolution, as follows.
In Section 4, we express subsumption and subsumption resolution through constraints,
allowing us to encode subsumption (resolution) as a SAT problem in Section 5.

4 Subsumption Constraints
Throughout the remainder of the paper, we assume that clauses do not have duplicate
literals and do not contain both a literal and its negation, as expressed by Assumption 1
below. Only substitutions may collapse several literals into one, as illustrated in
Example 1.

Assumption 1 (No Duplicates) We assume that a clause 𝐶 = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓ𝑘 does not have
duplicate atoms. That is, 𝐶 does not contain duplicate literals, nor a literal and its negation.

no duplicates for any 𝐶 = ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓ𝑘 : ∀𝑖 𝑖′ .
(
𝑖 ≠ 𝑖′ ⇒ ℓ𝑖 ≠ ℓ𝑖′ ∧ ℓ𝑖 ≠ ¬ℓ𝑖′

)
(4)

We first show that the application of subsumption (Theorem 1) and subsumption
resolution (Theorem 2) can precisely be captured by substitution constraints, as follows.
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Theorem 1 (Subsumption Constraints) Consider two clauses 𝑆 = 𝑠1 ∨ 𝑠2 ∨ · · · ∨ 𝑠𝑘 and
𝑀 = 𝑚1 ∨ 𝑚2 ∨ · · · ∨ 𝑚𝑛, where 𝑀 does not contain duplicate literals. 𝑆 subsumes 𝑀 iff there
exists a substitution 𝜎 that satisfies the following two properties:

partial completeness ∀𝑖. ∃ 𝑗 . 𝜎(𝑠𝑖) = 𝑚 𝑗 (5)
multiplicity conservation ∀𝑖 𝑖′ 𝑗 .

(
𝑖 ≠ 𝑖′ ∧ 𝜎(𝑠𝑖) = 𝑚 𝑗 ⇒ 𝜎(𝑠𝑖′ ) ≠ 𝑚 𝑗

)
(6)

Proof Because 𝑀 does not contain duplicate literals, the subsumption condition 𝜎(𝑆) ⊑ 𝑀

amounts to the two statements (i) each element of 𝜎(𝑆) is an element of 𝑀 and (ii) the
multiplicity of elements in 𝜎(𝑆) is at most one, i.e., there are no duplicates in 𝜎(𝑆).

Statement (i) is equivalent to partial completeness (5).
Given (5), multiplicity conservation (6) can be rewritten into

∀𝑖 𝑖′ .
(
𝑖 ≠ 𝑖′ ⇒ 𝜎(𝑠𝑖) ≠ 𝜎(𝑠𝑖′ )

)
,

which is equivalent to statement (ii). □

Note that the partial completeness property (5) ensures that all literals 𝜎(𝑠𝑖)
have a literal 𝑚 𝑗 to which they match. Partial completeness (5) alone would, however,
encode a simple subset inclusion. The multiplicity conservation constraint (6)
ensures the preservation of the cardinality of the multi-set. In fact, due to Assumption 1,
𝑀 is a simple set, and multiplicity conservation (6) prevents the substition 𝜎 from
collapsing several literals into one. As a result of Theorem 1, only one literal in 𝑆 can
be matched to any literal of 𝑀.

Similarly to Theorem 1, we show that subsumption resolution can be formalised
through four constraints, as follows.

Theorem 2 (Subsumption Resolution Constraints) The clauses 𝑀 = 𝑚1 ∨ 𝑚2 ∨ · · · ∨ 𝑚𝑛

and 𝑆 = 𝑠1 ∨ 𝑠2 ∨ · · · ∨ 𝑠𝑘 are respectively the main and side premises of an instance of the
subsumption resolution rule SR iff there exists a substitution 𝜎 that satisfies the following four
properties:

existence ∃𝑖 𝑗 . 𝜎(𝑠𝑖) = ¬𝑚 𝑗 (7)
uniqueness ∃ 𝑗 ′ .∀𝑖 𝑗 .

(
𝜎(𝑠𝑖) = ¬𝑚 𝑗 ⇒ 𝑗 = 𝑗 ′

)
(8)

completeness ∀𝑖. ∃ 𝑗 .
(
𝜎(𝑠𝑖) = ¬𝑚 𝑗 ∨ 𝜎(𝑠𝑖) = 𝑚 𝑗

)
(9)

coherence ∀ 𝑗 .
(
∃𝑖. 𝜎(𝑠𝑖) = 𝑚 𝑗 ⇒ ∀𝑖. 𝜎(𝑠𝑖) ≠ ¬𝑚 𝑗

)
(10)

Proof It is easy to see that the constraints (7)-(10) hold whenever subsumption resolution
applies. For the other direction, we assume that the four constraints (7)-(10) hold, and
prove that subsumption resolution applies on (𝑆, 𝑀). Let 𝑆, 𝑀 and 𝜎 such that the four
constraints hold. Existence (7) implies that there exists at least one literal 𝑚′ ∈ 𝑀 and
a non-empty set 𝑆′ ⊆ 𝑆 such that ¬𝑚′ ∈ 𝜎(𝑆′). Uniqueness (8) asserts that 𝑚′ is unique,
and therefore {¬𝑚′} = 𝜎(𝑆′). We can now divide the literals of 𝑆 into two groups: 𝑆′ and
𝑆∗ such that 𝜎(𝑆′) = {¬𝑚′} and 𝑆∗ = 𝑆 \ 𝑆′. Coherence (10) ensures that 𝑚′ ∉ 𝜎(𝑆∗). From
completeness (9), we derive 𝜎(𝑆∗) ⊆ 𝑀. Furthermore, 𝑚′ is unique and 𝑚′ ∉ 𝜎(𝑆∗). Therefore,
𝜎(𝑆∗) ⊆ 𝑀 \ {𝑚′}. Putting everything together, we obtain 𝜎(𝑆′) = {¬𝑚′} ∧ 𝜎(𝑆∗) ⊆ 𝑀 \ {𝑚′};
hence SR over (𝑆, 𝑀) applies. □
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5 SAT Formalization of Subsumption Constraints
Based on the subsumption constraints of Theorems 1 and 2, we provide tailored SAT
encodings for subsumption and subsumption resolution, allowing us to devise custom
SAT solving algorithms in Section 6.1 and integrate them in saturation Section 7. In
what follows, we fix two arbitrary clauses 𝑆 = 𝑠1∨𝑠2∨· · ·∨𝑠𝑘 and 𝑀 = 𝑚1∨𝑚2∨· · ·∨𝑚𝑛,
and give all definitions relative to (𝑆, 𝑀). Intuitively, the constraints defined in this
section encode the existence of a substitution 𝜎 which witnesses subsumption or
subsumption resolution.
Variables and substitutions. Given the side premise 𝑆 and main premise 𝑀 of
subsumption or subsumption resolution, we introduce two Boolean variables 𝑏+

𝑖, 𝑗
and

𝑏−
𝑖, 𝑗

for each literal pair (𝑠𝑖 , 𝑚 𝑗 ), as follows:

𝑏+𝑖, 𝑗 ⇔ 𝜎(𝑠𝑖) = 𝑚 𝑗 (11)

𝑏−𝑖, 𝑗 ⇔ 𝜎(𝑠𝑖) = ¬𝑚 𝑗 (12)

We also define a set of substitutions Σ+
𝑖, 𝑗

and Σ−
𝑖, 𝑗

, called substitution constraints,
such that Σ+

𝑖, 𝑗
(𝑠𝑖) = 𝑚 𝑗 , and Σ−

𝑖, 𝑗
(𝑠𝑖) = ¬𝑚 𝑗 . In the following, we write Σ±

𝑖, 𝑗
to refer to

the substitution constraints of Σ+
𝑖, 𝑗

or Σ−
𝑖, 𝑗

; when no such substitution exists, we write
Σ̃. For example, let 𝑠1 = 𝑝(𝑥, 𝑦) and 𝑚1 = ¬𝑝( 𝑓 (𝑐), 𝑑). The two variables 𝑏+1,1, 𝑏

−
1,1 are

associated to the pair (𝑠1, 𝑚1) and the substitutions Σ+1,1 = Σ̃, Σ−1,1 = {𝑥 ↦→ 𝑓 (𝑐), 𝑦 ↦→ 𝑑}.

Definition 3 (Match set) We define a match set Π(𝑆, 𝑀) associated to clauses 𝑆 and 𝑀 to
contain a set of Boolean variables and positive/negative polarity matches for each literal pair
(𝑠𝑖 , 𝑚 𝑗 ) of (𝑆, 𝑀). That is,

Π(𝑆, 𝑀) =
{(
𝑏+𝑖, 𝑗 , Σ

+
𝑖, 𝑗

)
,

(
𝑏−𝑖, 𝑗 , Σ

−
𝑖, 𝑗

) ��� 𝑠𝑖 ∈ 𝑆 ∧ 𝑚 𝑗 ∈ 𝑀 ∧ Σ+𝑖, 𝑗 (𝑠𝑖) = 𝑚 𝑗 ∧ Σ−𝑖, 𝑗 (𝑠𝑖) = ¬𝑚 𝑗

}
(13)

Compatibility constraints. Detecting the application of subsumption and/or sub-
sumption resolution requires finding a substitution 𝜎 such that the subsumption
constraints of Theorems 1-2 are satisfied. We achieve this by imposing that the substi-
tution constraints Σ±

𝑖, 𝑗
⊆ 𝜎 are true iff Σ±

𝑖, 𝑗
are compatible with a global substitution 𝜎,

in the following sense.

Definition 4 (Substitution Compatibility) A substitution Σ is compatible with another
substitution Σ′ if they do not map the same variable to different terms. Formally, Σ is
compatible with Σ′ iff

∀𝑥.(Σ(𝑥) = 𝑡 ∧ Σ′ (𝑥) = 𝑡′ ∧ 𝑡 ≠ 𝑥 ∧ 𝑡′ ≠ 𝑥) =⇒ 𝑡 = 𝑡′ . (14)
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The compatibility of the substitution constraints Σ±
𝑖, 𝑗
⊆ 𝜎 with 𝜎 is encoded using

the Boolean variables 𝑏±
𝑖, 𝑗

, as follows:

positive compatibility
∧
𝑖

∧
𝑗

(
𝑏+𝑖, 𝑗 ⇒ Σ+𝑖, 𝑗 ⊆ 𝜎

)
(15)

negative compatibility
∧
𝑖

∧
𝑗

(
𝑏−𝑖, 𝑗 ⇒ Σ−𝑖, 𝑗 ⊆ 𝜎

)
(16)

Note that Σ+
𝑖, 𝑗

is a substitution constraint between 𝑠𝑖 and 𝑚 𝑗 . Further, Σ+
𝑖, 𝑗
⊆ 𝜎 ⇔

𝜎(𝑠𝑖) = 𝑚 𝑗 . Using Σ+
𝑖, 𝑗

together with (15), we derive 𝑏+
𝑖, 𝑗
⇒ 𝜎(𝑠𝑖) = 𝑚 𝑗 . A similar

result is obtained for compatibility of Σ−
𝑖, 𝑗

.

5.1 SAT Encoding of Subsumption
Note that Definition 1 and Theorem 1 imply that subsumption is restricted to only
positive matches between literals of 𝑆, 𝑀. As such, 𝑏−

𝑖, 𝑗
need not to be considered for

subsumption.
Using (11)-(12), we rewrite the subsumption constraints of Theorem 1 by replacing

substitution constraints with the Boolean variable 𝑏+
𝑖, 𝑗

, yielding:

SAT-based partial completeness
∧
𝑖

∨
𝑗

𝑏+𝑖, 𝑗 (17)

SAT-based multiplicity conservation
∧
𝑗

AMO ({𝑏+𝑖, 𝑗 | 𝑖 = 1, ..., 𝑘}) (18)

where AMO ({𝑏+
𝑖, 𝑗
| 𝑖 = 1, ..., 𝑘}) is an at-most-one constraint ensuring that at most one

variable 𝑏+
𝑖, 𝑗

is true at the same time.

Theorem 3 Assume that clause 𝑀 does not have duplicate atoms, as in (4). Let Π(𝑆, 𝑀) ={(
𝑏±
𝑖, 𝑗

, Σ±
𝑖, 𝑗

)}
be the match set of 𝑆 and 𝑀. Positive compatibility (15) and SAT-based

partial completeness (17) imply Σ+
𝑖, 𝑗
⊆ 𝜎 ⇒ 𝑏+

𝑖, 𝑗
.

Proof Towards a contradiction, assume there exist 𝑖, 𝑗 such that Σ+
𝑖, 𝑗
⊆ 𝜎 and 𝑏+

𝑖, 𝑗
= ⊥.

Condition (17) implies that there exists 𝑗 ′ such that 𝑏+
𝑖, 𝑗′ = ⊤; then, by constraint (15) we

have Σ+
𝑖, 𝑗′ ⊆ 𝜎, that is, Σ+

𝑖, 𝑗′ (𝑠𝑖) = 𝑚 𝑗′ . Since both Σ+
𝑖, 𝑗

and Σ+
𝑖, 𝑗′ impose a mapping on the same

literal 𝑠𝑖 , the mappings are on the same variables. Therefore, for Σ+
𝑖, 𝑗

and Σ+
𝑖, 𝑗′ to be compatible

with 𝜎 simultaneously, they must be identical. Hence, 𝑚 𝑗 = Σ+
𝑖, 𝑗
(𝑠𝑖) = Σ+

𝑖, 𝑗′ (𝑠𝑖) = 𝑚 𝑗′ , which
contradicts Assumption 1. □

We have now all the ingredients to introduce our SAT-based encoding of
subsumption.
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Definition 5 (SAT-Based Subsumption Encoding) The SAT-based subsumption encoding
ES (𝑆, 𝑀) of the clauses 𝑆 and 𝑀 is the conjunction of positive compatibility (15), SAT-
based partial completeness (17), and SAT-based multiplicity conservation (18).

As a consequence of Theorem 3, we obtain the following corollary.

Corollary 1 A model of the subsumption encoding ES (𝑆, 𝑀) satisfies ∀𝑖, 𝑗 . 𝑏+
𝑖, 𝑗
⇔ 𝜎(𝑠𝑖) = 𝑚 𝑗 .

Corollary 1 ensures that ∀𝑖, 𝑗 . 𝑏+
𝑖, 𝑗
⇔ Σ+

𝑖, 𝑗
⊆ 𝜎, based on which soundness of our

SAT-based subsumption encoding is derived.

Theorem 4 (Soundness) Assume 𝑀 does not contain duplicate literals. Clause 𝑆 subsumes
𝑀 iff the subsumption encoding ES (𝑆, 𝑀) is satisfiable.

Proof Corollary 1 implies that, if ES (𝑆, 𝑀) is satisfied, all propositional variables 𝑏+
𝑖, 𝑗

can be
replaced by 𝜎(𝑠𝑖) = 𝑚 𝑗 . SAT-based partial completeness (17) yields

∧
𝑖

∨
𝑗 𝜎(𝑠𝑖) = 𝑚 𝑗 ,

that is ∀𝑖∃ 𝑗 . 𝜎(𝑠𝑖) = 𝑚 𝑗 . Using the at-most-one constraint of (18), if 𝑏+
𝑖, 𝑗

≠ 𝑏+
𝑖, 𝑗′ then

𝑏+
𝑖, 𝑗

=⇒ ¬𝑏+
𝑖, 𝑗′ . Based on (11), we hence obtain that if ES (𝑆, 𝑀) is satisfiable, then 𝜎(𝑆) ⊑ 𝑀

by Theorem 1.
For the other direction, assume 𝑆 subsumes 𝑀; that is, 𝑆 ⊑ 𝑀. Based on Assumption 1, 𝑀

has no duplicate literals. For 𝜎(𝑆) to be a sub-multiset of 𝑀, it should not contain duplicates
either. Therefore, there exists a total bijective function 𝑗 (𝑖) such that 𝜎(𝑠𝑖) = 𝑚 𝑗 (𝑖) . From
this function, one can build a model such that 𝑏+

𝑖, 𝑗 (𝑖) = ⊤ for all 𝑖, and all other variables
are false. This model satisfies positive compatibility (15). Indeed, since 𝜎(𝑠𝑖) = 𝑚 𝑗 (𝑖) , we
have Σ+

𝑖, 𝑗 (𝑖) ⊆ 𝜎. SAT-based partial completeness (17) is also satisfied since 𝑗 (𝑖) is a total
function. SAT-based multiplicity conservation (18) is ensured by the bijectivity of 𝑗 (𝑖).
In summary, if 𝑆 ⊑ 𝑀, then ES is satisfiable. □

Example 3 (Subsumption with ES (𝑆, 𝑀)) Consider the following clause pair 𝑆 = 𝑠1 ∨ 𝑠2 ∨ 𝑠3
and 𝑀 = 𝑚1 ∨ 𝑚2 ∨ 𝑚3, with

𝑠1 = 𝑞(𝑥1) 𝑚1 = 𝑞(𝑐)
𝑠2 = 𝑝(𝑥1, 𝑥2) 𝑚2 = 𝑝(𝑐, 𝑑)
𝑠3 = 𝑝(𝑥2, 𝑥1) 𝑚3 = 𝑝(𝑑, 𝑐)

We first construct the substitution constraints matching the different literal pairs (𝑠𝑖 , 𝑚 𝑗 ):

Σ+𝑖, 𝑗 =
©­«

{𝑥1 ↦→ 𝑐} Σ̃ Σ̃

Σ̃ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} {𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑐}
Σ̃ {𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑐} {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑}

ª®¬
The SAT encoding ES (𝑆, 𝑀) of subsumption is given by:

𝑏+1,1 ⇒ {𝑥1 ↦→ 𝑐} ⊆ 𝜎 positive compatibility

𝑏+2,2 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ⊆ 𝜎 positive compatibility

𝑏+2,3 ⇒ {𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑐} ⊆ 𝜎 positive compatibility

𝑏+3,2 ⇒ {𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑐} ⊆ 𝜎 positive compatibility

12



𝑏+3,3 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ⊆ 𝜎 positive compatibility

𝑏+1,1 SAT-based partial completeness

𝑏+2,2 ∨ 𝑏+2,3 SAT-based partial completeness

𝑏+3,2 ∨ 𝑏+3,3 SAT-based partial completeness

AMO ({𝑏+1,1}) SAT-based multiplicity conservation

AMO ({𝑏+2,2, 𝑏
+
3,2}) SAT-based multiplicity conservation

AMO ({𝑏+2,3, 𝑏
+
3,3}) SAT-based multiplicity conservation

Our tailored SAT solver from Section 6 returns a model {𝑏+1,1, 𝑏
+
2,2,¬𝑏

+
2,3,¬𝑏

+
3,2, 𝑏

+
3,3} that

satisfies ES (𝑆, 𝑀). We build the final substitution 𝜎 witnessing that 𝜎(𝑆) ⊑ 𝑀, and hence 𝑆

subsumes 𝑀, as the union of all the substitutions bound to variables assigned to true. This
gives 𝜎 = {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑}.

5.2 Direct SAT Encoding of Subsumption Resolution
Similarly to subsumption, we translate the constraints of Theorem 2 into SAT, while
also considering both positive compatibility (15) and negative compatibility (16).
The following SAT constraints are derived from Theorem 2:

SAT-based existence
∨
𝑖

∨
𝑗

𝑏−𝑖, 𝑗 (19)

SAT-based uniqueness
∧
𝑗

∧
𝑖

∧
𝑖′≥𝑖

∧
𝑗′> 𝑗

¬𝑏−𝑖, 𝑗 ∨ ¬𝑏−𝑖′ , 𝑗′ (20)

SAT-based completeness
∧
𝑖

∨
𝑗

𝑏+𝑖, 𝑗 ∨ 𝑏−𝑖, 𝑗 (21)

SAT-based coherence
∧
𝑗

∧
𝑖

∧
𝑖′
¬𝑏+𝑖, 𝑗 ∨ ¬𝑏−𝑖′ , 𝑗 (22)

Theorem 5 Assume that clause 𝑀 does not have duplicate atoms, as in (4). Let Π(𝑆, 𝑀) ={(
𝑏±
𝑖, 𝑗

, Σ±
𝑖, 𝑗

)}
be the match set of 𝑆 and 𝑀. Positive compatibility (15), negative com-

patibility (16), and completeness (21) ensures that Σ+
𝑖, 𝑗
⊆ 𝜎 ⇒ 𝑏+

𝑖, 𝑗
and Σ−

𝑖, 𝑗
⊆ 𝜎 ⇒

𝑏−
𝑖, 𝑗

.

Proof We use a similar argumentation as in proving Theorem 3. We only prove the claim
for 𝑠𝑖 , 𝑚 𝑗 such that Σ+

𝑖, 𝑗
⊆ 𝜎 and 𝑏+

𝑖, 𝑗
= ⊥; the other case is similar. SAT-based complete-

ness (21) ensures that there exists 𝑗 ′ such that 𝑏+
𝑖, 𝑗′ ∨ 𝑏−

𝑖, 𝑗′ . Using compatibility (15)–(16),
we have 𝑏+

𝑖, 𝑗′ ∨ 𝑏−
𝑖, 𝑗′ ⇒ (𝜎(𝑠𝑖) = 𝑚 𝑗′ ∨ 𝜎(𝑠𝑖) = ¬𝑚 𝑗′ ). Similarly as in Theorem 3, we obtain

Σ+
𝑖, 𝑗
(𝑠𝑖) = Σ+

𝑖, 𝑗′ (𝑠𝑖) ∨ Σ+
𝑖, 𝑗
(𝑠𝑖) = ¬Σ−𝑖, 𝑗′ (𝑠𝑖), which is equivalent to 𝑚 𝑗 = 𝑚 𝑗′ ∨ 𝑚 𝑗 = ¬𝑚 𝑗′ . Since

Σ+
𝑖, 𝑗
⊆ 𝜎, we have Σ+

𝑖, 𝑗
≠ Σ̃. Therefore, Σ−

𝑖, 𝑗
is the incompatible substitution Σ̃; that is, Σ−

𝑖, 𝑗
= Σ̃.

From Σ−
𝑖, 𝑗

= Σ̃, we infer 𝑏−
𝑖, 𝑗

= ⊥. In short, we have ¬𝑏+
𝑖, 𝑗
∧¬𝑏−

𝑖, 𝑗
∧ (𝑏+

𝑖, 𝑗′ ∨ 𝑏
−
𝑖, 𝑗′ ), therefore 𝑗 ≠ 𝑗 ′

and (4) of Assumption 1 is violated. In conclusion, (4)∧(15)∧(16)∧(21) implies (11)∧(12). □
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Following upon Theorem 5, the (direct) SAT formalization of subsumption resolution
is given below.

Definition 6 (Direct SAT Encoding of Subsumption Resolution) The direct SAT encoding
of subsumption resolution E 𝑑

SR (𝑆, 𝑀) for the side and main premises 𝑆 and 𝑀 is the con-
junction of positive compatibility (15), negative compatibility (16), existence (19),
uniqueness (20), completeness (9) and coherence (22).

Corollary 2 A model of the direct subsumption resolution encoding E 𝑑
SR (𝑆, 𝑀) satisfies

∀𝑖, 𝑗 . 𝑏+
𝑖, 𝑗
⇔ 𝜎(𝑠𝑖) = 𝑚 𝑗 and ∀𝑖, 𝑗 . 𝑏−

𝑖, 𝑗
⇔ 𝜎(𝑠𝑖) = ¬𝑚 𝑗 .

Towards finding an effective SAT-solving approach, Theorem 6 yields a direct
algorithmic solution to subsumption resolution.

Theorem 6 (Soundness) Assume 𝑀 does not contain duplicate atoms. Clauses 𝑆 and 𝑀 are
respectively the side and main premises of subsumption resolution iff E 𝑑

SR (𝑆, 𝑀) is satisfiable.

Proof Similarly to Theorem 4, we use Corollary 2 together with the definition of 𝑏±
𝑖, 𝑗

to obtain
the SAT constraints of E 𝑑

SR (𝑆, 𝑀) from Theorem 2.
Assume 𝑆 and 𝑀 are the side and main premises of subsumption resolution. There exists a

substitution 𝜎, a literal 𝑚′ ∈ 𝑀 and a set of literals 𝑆′ ⊆ 𝑆 such that 𝜎(𝑆′) = {¬𝑚′}∧𝜎(𝑆\𝑆′) ⊆
𝑀 \ {𝑚′}. We can build a model for 𝑏±

𝑖, 𝑗
that satisfies each constraint of E 𝑑

SR (𝑆, 𝑀). Without
loss of generality, let 𝑚′ = 𝑚1. For each literal in 𝑠𝑖′ ∈ 𝑆′, we set 𝑏−

𝑖′ ,1 = ⊤. All other variables
𝑏±
𝑖′ , 𝑗 are set to false. Let 𝑆∗ = 𝑆 \ 𝑆′ and 𝑀∗ = 𝑀 \ {𝑚′}. If 𝜎(𝑆∗) ⊆ 𝑀∗, then there exists

a function 𝑗∗ (𝑖∗) such that for each literal 𝑠𝑖∗ , we have 𝜎(𝑠𝑖∗ ) = 𝑚 𝑗∗ (𝑖∗ ) . For each literal 𝑠𝑖∗ ,
we set 𝑏+

𝑖∗ , 𝑗∗ (𝑖∗ ) = ⊤ and all other variables are false. This assignment is indeed a model of

E 𝑑
SR (𝑆, 𝑀). □

Example 4 (Subsumption Resolution with E 𝑑
SR (𝑆, 𝑀)) Consider the following clause pair

𝑆 = 𝑠1 ∨ 𝑠2 ∨ 𝑠3 and 𝑀 = 𝑚1 ∨ 𝑚2 ∨ 𝑚3, with
𝑠1 = 𝑝( 𝑓 (𝑥1), 𝑥2) 𝑚1 = ¬𝑝( 𝑓 (𝑐), 𝑑)
𝑠2 = ¬𝑝(𝑥2, 𝑥1) 𝑚2 = ¬𝑝(𝑑, 𝑐)
𝑠3 = 𝑝( 𝑓 (𝑥3), 𝑥1) 𝑚3 = 𝑝( 𝑓 (𝑦1), 𝑐)

We build the following match sets:

Σ+𝑖, 𝑗 =
©­«

Σ̃ Σ̃ {𝑥1 ↦→ 𝑦1, 𝑥2 ↦→ 𝑐}
{𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑓 (𝑐)} {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} Σ̃

Σ̃ Σ̃ {𝑥1 ↦→ 𝑐, 𝑥3 ↦→ 𝑦1}

ª®¬
Σ−𝑖, 𝑗 =

©­«
{𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} Σ̃ Σ̃

Σ̃ Σ̃ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑓 (𝑦1)}
{𝑥1 ↦→ 𝑑, 𝑥3 ↦→ 𝑐} Σ̃ Σ̃

ª®¬
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We can express the direct subsumption resolution encoding E 𝑑
SR (𝑆, 𝑀) as

𝑏+1,3 ⇒ {𝑥1 ↦→ 𝑦1, 𝑥2 ↦→ 𝑐} ⊆ 𝜎 positive compatibility

𝑏+2,1 ⇒ {𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑓 (𝑐)} ⊆ 𝜎 positive compatibility

𝑏+2,2 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ⊆ 𝜎 positive compatibility

𝑏+3,3 ⇒ {𝑥1 ↦→ 𝑐, 𝑥3 ↦→ 𝑦1} ⊆ 𝜎 positive compatibility

𝑏−1,1 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ⊆ 𝜎 negative compatibility

𝑏−2,3 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑓 (𝑦1)} ⊆ 𝜎 negative compatibility

𝑏−3,1 ⇒ {𝑥1 ↦→ 𝑑, 𝑥3 ↦→ 𝑐} ⊆ 𝜎 negative compatibility

𝑏−1,1 ∨ 𝑏−2,3 ∨ 𝑏−3,1 SAT-based existence

¬𝑏−1,1 ∨ ¬𝑏
−
2,3 SAT-based uniqueness

¬𝑏−2,3 ∨ ¬𝑏
−
3,1 SAT-based uniqueness

𝑏−1,1 ∨ 𝑏+1,3 SAT-based completeness

𝑏+2,1 ∨ 𝑏+2,2 ∨ 𝑏−2,3 SAT-based completeness

𝑏−3,1 ∨ 𝑏+3,3 SAT-based completeness

¬𝑏−1,1 ∨ ¬𝑏
+
2,1 SAT-based coherence

¬𝑏−3,1 ∨ ¬𝑏
+
2,1 SAT-based coherence

¬𝑏−2,3 ∨ ¬𝑏
+
1,3 SAT-based coherence

¬𝑏−2,3 ∨ ¬𝑏
+
3,3 SAT-based coherence

Our SAT solver from Section 6 derives the model {¬𝑏+1,3,¬𝑏
+
2,1, 𝑏

+
2,2, 𝑏

+
3,3, 𝑏

−
1,1,¬𝑏

−
2,3,¬𝑏

−
3,1}

of E 𝑑
SR (𝑆, 𝑀), as detailed in Example 6. The substitution 𝜎 is correct and is composed of the

union of all the substitutions bound to variables assigned true:

𝜎 =
⋃{

Σ+𝑖, 𝑗
�� 𝑏+𝑖, 𝑗 = ⊤} ∪⋃{

Σ−𝑖, 𝑗
�� 𝑏−𝑖, 𝑗 = ⊤}

that is,

𝜎 = {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ∪ {𝑥1 ↦→ 𝑐, 𝑥3 ↦→ 𝑦1} ∪ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑}
= {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑, 𝑥3 ↦→ 𝑦1}

The conclusion clause of SR is built from the model by removing 𝑚1 from the main premise
because 𝑏−1,1 = ⊤. This gives us the resolution clause 𝑀 \ {𝑚1} = ¬𝑝(𝑑, 𝑐) ∨ 𝑝( 𝑓 (𝑦1), 𝑐), which
subsumes 𝑀.

5.3 Indirect SAT Encoding of Subsumption Resolution
The direct SAT encoding E 𝑑

SR(𝑆, 𝑀) of subsumption resolution has a potential ineffi-
ciency due to the fact that the uniqueness constraint (20) may create a quartic
number of clauses in the worst case. We circumvent this issue by trading off constrains
for variables, resulting in an indirect SAT encoding E 𝑖

SR(𝑆, 𝑀) of subsumption resolu-
tion. Doing so, we introduce a new set of propositional variables 𝑐 𝑗 such that 𝑐 𝑗 is true
iff 𝑚 𝑗 is the resolution literal of SR. In other words, 𝑐 𝑗 ⇔ ∃𝑖. 𝜎(𝑠𝑖) = ¬𝑚 𝑗 .
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We encode the role of 𝑐 𝑗 with constraint (23) given below:

SAT-based structurality
∧
𝑗

[
¬𝑐 𝑗 ∨

∨
𝑖

𝑏−𝑖, 𝑗

]
∧
∧
𝑗

∧
𝑖

(
𝑐 𝑗 ∨ ¬𝑏−𝑖, 𝑗

)
(23)

Using variables 𝑐 𝑗 , the constraints of Theorem 2 are turned into the following SAT
formulas:

SAT-based revised existence
∨
𝑗

𝑐 𝑗 (24)

SAT-based revised uniqueness AMO ({𝑐 𝑗 , 𝑗 = 1, ..., |𝑀 |}) (25)

SAT-based completeness
∧
𝑖

∨
𝑗

𝑏+𝑖, 𝑗 ∨ 𝑏−𝑖, 𝑗 (26)

SAT-based revised coherence
∧
𝑗

∧
𝑖

(
¬𝑐 𝑗 ∨ ¬𝑏+𝑖, 𝑗

)
(27)

Definition 7 (Indirect SAT Encoding of Subsumption Resolution) The indirect SAT encoding
for subsumption resolution E 𝑖

SR (𝑆, 𝑀) for clauses 𝑆 and 𝑀 is the conjunction of positive com-
patibility (15), negative compatibility (16), structurality (23), revised existence (24),
revised uniqueness (25), completeness (26), and revised coherence (27).

With this new indirect encoding E 𝑖
SR(𝑆, 𝑀), the number of clauses is only quadratic

with respect to the length of the clauses.

Theorem 7 (Soundness) Assume 𝑀 does not contain duplicate literals, as in (4). Clauses 𝑆

and 𝑀 are the side and main premise of subsumption resolution iff E 𝑖
SR (𝑆, 𝑀) is satisfiable.

Proof From Theorem 5, if (15) ∧ (16) ∧ (26) is satisfiable, then ∀𝑖, 𝑗 . 𝑏+
𝑖, 𝑗
⇔ 𝜎(𝑠𝑖) = 𝑚 𝑗 and

∀𝑖, 𝑗 . 𝑏−
𝑖, 𝑗
⇔ 𝜎(𝑠𝑖) = ¬𝑚 𝑗 . Using (23), we obtain ∀ 𝑗 . 𝑐 𝑗 ⇔ ∃𝑖. 𝜎(𝑠𝑖) = ¬𝑚 𝑗 . Based on (24)-(27),

we obtain the subsumption resolution constraints of Theorem 2. Therefore, if E 𝑖
SR (𝑆, 𝑀) is

satisfiable, then subsumption resolution can be applied over (𝑆, 𝑀).
For the other direction, assume subsumption resolution can be applied over (𝑆, 𝑀). Then,

we can build a model that satisfies E 𝑖
SR (𝑆, 𝑀), as follows. There exists a substitution 𝜎, a

literal 𝑚′ ∈ 𝑀 and a set of literals 𝑆′ ⊆ 𝑆 such that 𝜎(𝑆′) = {¬𝑚′} ∧ 𝜎(𝑆 \ 𝑆′) ⊆ 𝑀 \ {𝑚′}.
Without loss of generality, let 𝑚1 = 𝑚′ be the resolution literal or SR. We set 𝑐1 = ⊤ and all
the other 𝑐 𝑗 to false. For each literal in 𝑠𝑖′ ∈ 𝑆′, we set 𝑏−

𝑖′ ,1 = ⊤ and 𝑏−
𝑖′ , 𝑗 = ⊥, for 𝑗 ≠ 1;

further, 𝑏+
𝑖′ , 𝑗 = ⊥, for all 𝑗 . Let 𝑆∗ = 𝑆 \ 𝑆′. For each literal 𝑠𝑖∗ ∈ 𝑆∗, there exists a literal

𝑚 𝑗∗ ∈ 𝑀 \ {𝑚1} such that 𝜎(𝑠𝑖∗ ) = 𝑚 𝑗∗ . We set 𝑏+
𝑖∗ , 𝑗∗ = ⊤; 𝑏+

𝑖∗ , 𝑗 = ⊥, for 𝑗 ≠ 𝑗∗; and 𝑏−
𝑖∗ , 𝑗 = ⊥,

for all 𝑗 . This is indeed a model of E 𝑖
SR (𝑆, 𝑀). □

We note that, in practice, the number of clauses of the indirect SAT encoding can be
greater than the direct SAT encoding, even for large clauses. Indeed, it is not necessary
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to define variables for literal pairs that we know in advance cannot be matched. If
Σ+
𝑖, 𝑗

= Σ̃, we do not define 𝑏+
𝑖, 𝑗

because the constraint 𝑏+
𝑖, 𝑗
⇒ Σ+

𝑖, 𝑗
⊆ 𝜎 will be reduced

to 𝑏+
𝑖, 𝑗
⇒ ⊥ and 𝑏+

𝑖, 𝑗
is always false. We do not need to add the clauses containing

¬𝑏+
𝑖, 𝑗

, and we remove the literals 𝑏+
𝑖, 𝑗

where it appears. In practice, most instances
of subsumption and subsumption resolution have a sparse Boolean variable set, and
behave quite well even with the direct SAT encoding. Choosing which encoding to use
is discussed in Section 8.2.

Example 5 (Subsumption Resolution with E 𝑖
SR (𝑆, 𝑀)) Consider clauses from Example 4.

Namely, 𝑆 = 𝑠1 ∨ 𝑠2 ∨ 𝑠3 and 𝑀 = 𝑚1 ∨ 𝑚2 ∨ 𝑚3, with
𝑠1 = 𝑝( 𝑓 (𝑥1), 𝑥2) 𝑚1 = ¬𝑝( 𝑓 (𝑐), 𝑑)
𝑠2 = ¬𝑝(𝑥2, 𝑥1) 𝑚2 = ¬𝑝(𝑑, 𝑐)
𝑠3 = 𝑝( 𝑓 (𝑥3), 𝑥1) 𝑚3 = 𝑝( 𝑓 (𝑦1), 𝑐)

In the indirect SAT encoding E 𝑖
SR (𝑆, 𝑀), we introduce two extra variables 𝑐1 and 𝑐3 such

that 𝑐1 is true iff ∃𝑖. 𝑏−
𝑖,1, and 𝑐3 is true iff ∃𝑖. 𝑏−

𝑖,3. It is not necessary to define 𝑐2 since
no negative polarity matches exist towards 𝑚2, and 𝑐2 is set to false. The SAT constraints
identical to the direct SAT encoding E 𝑑

SR (𝑆, 𝑀) are written below in light gray to better
highlight the difference between E 𝑑

SR (𝑆, 𝑀) and E 𝑖
SR (𝑆, 𝑀).

𝑏+1,3 ⇒ {𝑥1 ↦→ 𝑦1, 𝑥2 ↦→ 𝑐} ⊆ 𝜎 positive compatibility

𝑏+2,1 ⇒ {𝑥1 ↦→ 𝑑, 𝑥2 ↦→ 𝑓 (𝑐)} ⊆ 𝜎 positive compatibility

𝑏+2,2 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ⊆ 𝜎 positive compatibility

𝑏+3,3 ⇒ {𝑥1 ↦→ 𝑐, 𝑥3 ↦→ 𝑦1} ⊆ 𝜎 positive compatibility

𝑏−1,1 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑑} ⊆ 𝜎 negative compatibility

𝑏−2,3 ⇒ {𝑥1 ↦→ 𝑐, 𝑥2 ↦→ 𝑓 (𝑦1)} ⊆ 𝜎 negative compatibility

𝑏−3,1 ⇒ {𝑥1 ↦→ 𝑑, 𝑥3 ↦→ 𝑐} ⊆ 𝜎 negative compatibility

¬𝑐1 ∨ 𝑏−1,1 ∨ 𝑏−3,1 SAT-based structurality

𝑐1 ∨ ¬𝑏−1,1 SAT-based structurality

𝑐1 ∨ ¬𝑏−3,1 SAT-based structurality

¬𝑐3 ∨ 𝑏−2,3 SAT-based structurality

𝑐3 ∨ ¬𝑏−2,3 SAT-based structurality

𝑐1 ∨ 𝑐3 SAT-based revised existence
AMO ({𝑐1, 𝑐3}) SAT-based revised uniqueness
𝑏−1,1 ∨ 𝑏+1,3 SAT-based completeness

𝑏+2,1 ∨ 𝑏+2,2 ∨ 𝑏−2,3 SAT-based completeness

𝑏−3,1 ∨ 𝑏+3,3 SAT-based completeness

¬𝑐1 ∨ ¬𝑏+2,1 SAT-based revised coherence

¬𝑐3 ∨ ¬𝑏+1,3 SAT-based revised coherence

¬𝑐3 ∨ ¬𝑏+3,3 SAT-based revised coherence
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Using the above indirect encoding E 𝑖
SR (𝑆, 𝑀), our SAT solver in Section 6 finds the same

model (substitution) of subsumption resolution as in Example 4, with 𝑐1, 𝑐2 being assigned
true and false respectively.

We remark that the indirect encoding E 𝑖
SR(𝑆, 𝑀) does not seem to have much of an

advantage on small examples similar to Example 5. Indeed, structurality (23) adds a
few clauses that are not necessary with the direct encoding E 𝑑

SR(𝑆, 𝑀). In Section 8.2
we empirically show that the indirect encoding E 𝑖

SR(𝑆, 𝑀) of subsumption resolution
performs better on larger clauses.

6 SAT Solving for Subsumption Variants
We now describe our approach for solving the SAT-based encodings ES(𝑆, 𝑀), E 𝑑

SR(𝑆, 𝑀)
and E 𝑖

SR(𝑆, 𝑀) of Section 5 for subsumption and subsumption resolution. We first
introduce our SAT solver adjusted for the efficient handling of subsumption (resolution)
constraints, importantly for reasoning about substitution constraints Σ±

𝑖, 𝑗
⊆ 𝜎 and at-

most-one constraints (Section 6.1). We then describe pruning-based preprocessing steps
of subsumption (resolution) instances (Section 6.2), with the purpose of improving
SAT-based solving of subsumption and subsumption resolution.
Lightweight SAT Solving. We use the term lightweight SAT Solving to highlight
an important engineering aspect when designing a SAT solver for subsumption and
subsumption resolution. A typical run of a first-order theorem prover involves a large
number of simple subsumption (resolution) tests and a small number of hard tests.
Even after pruning, most instances that make it to the SAT solver are solved quickly
(see also Section 8.1 and Figure 1). As a result, some care must be taken to ensure that
setup of the SAT instances is efficient, because a large overhead may easily outweigh
gains in solving efficiency.

6.1 SAT Solver for Subsumption Encodings
Recall that the SAT-based encodings ES(𝑆, 𝑀), E 𝑑

SR(𝑆, 𝑀) and E 𝑖
SR(𝑆, 𝑀) of subsumption

and subsumption resolution use substitution constraints Σ±
𝑖, 𝑗
⊆ 𝜎 and at-most-one

constraints (AMO), which are out of scope for standard SAT solvers [31, 32]. A
naïve SAT approach of handling such constraints would be translating Σ±

𝑖, 𝑗
⊆ 𝜎 and

AMO formulas into purely propositional clauses. However, such a translation would
either require additional propositional variables to encode AMO constraints or would
come with a quadratic2 number of propositional clauses [36]; a similar situation also
occurs for substitution constraints Σ±

𝑖, 𝑗
⊆ 𝜎. To ensure efficient solving of subsumption

(resolution), solving our SAT encodings needs to be lightweight in order to be practically
feasible during redundancy checking in a first-order theorem prover.

As a remedy to overcome the increase in propositional variables/clauses in a naïve
SAT translation approach, we support substitution constraints as in (15) and (16),
as well as AMO constraints as in multiplicity conservation (18) and SAT-based

2Quadratic in the size of the AMO constraint.
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revised uniqueness (25), natively in SAT solving. In particular, we adjust unit prop-
agation and conflict resolution in CDCL-based SAT solving for handling propositional
formulas with substitution constraints and AMO constraints.
At-most-one constraints. Consider the constraint AMO ({𝑏1, 𝑏2, . . . , 𝑏𝑛}), which is
equivalent to the following purely propositional formula:∧

𝑖

∧
𝑗>𝑖

¬𝑏𝑖 ∨ ¬𝑏 𝑗 (28)

To keep our encoding of AMO constraints lightweight, we combine SAT solving with
AMO constraints in a way similar to SMT solving, as follows.

When the constraint AMO ({𝑏1, 𝑏2, . . . , 𝑏𝑛}) is added to the SAT solver, each of the
variables 𝑏1, 𝑏2, . . . , 𝑏𝑛 watches the constraint. Whenever one of the variables 𝑏𝑖 is as-
signed true, all 𝑏 𝑗 with 𝑗 ≠ 𝑖 must be false in order not to violate AMO ({𝑏1, 𝑏2, . . . , 𝑏𝑛});
hence 𝑏 𝑗 are propagated to false. The reasons of these propagations are exactly the
clauses ¬𝑏𝑖∨¬𝑏 𝑗 of (28); however, these clauses do not need to be explicitly constructed.
Conflict analysis in SAT solving then behaves as usual, without special considerations
for AMO constraints.
Compatibility constraints. Similar to AMO constraints, a compatibility constraint
is equivalent to a set of binary clauses, as given in (15)-(16). Let Σ1 ⋒ Σ2 denote that
the substitutions Σ1 and Σ2 are incompatible; based on Definition 4, there exists thus a
variable 𝑥 such that Σ1(𝑥) ≠ Σ2(𝑥). Let 𝐹 be the set of constraints under consideration.
The purely propositional semantics of the compatibility constraints (15)-(16) is the
clause set:

{¬𝑏 ∨ ¬𝑏′ | (𝑏 ⇒ Σ ⊆ 𝜎) ∈ 𝐹 ∧ (𝑏′ ⇒ Σ′ ⊆ 𝜎) ∈ 𝐹 ∧ Σ ⋒ Σ′} (29)

We remark that it is not necessary to generate the clauses (29) explicitly. Concep-
tually, our SAT solver updates a global substitution 𝜎𝜏 whenever a Boolean variable 𝑏

with associated substitution constraint Σ ⊆ 𝜎 is assigned true. Our SAT solver then
ensures that the following invariant holds:

𝜎𝜏 =
⋃{

Σ
�� 𝑏 ⇒ (Σ ⊆ 𝜎) ∈ 𝐹 ∧ 𝑏 ∈ 𝜏

}
, (30)

where 𝜏 is the current set of assigned literals of the SAT solver (i.e., the trail). Our SAT
solver uses 𝜎𝜏 to propagate any Boolean variables bound to incompatible substitutions
to false.

We note that, in practice, it is not necessary to keep 𝜎𝜏 explicitly; instead it suffices
to maintain a lookup table that allows propagating such incompatible substitutions.
Concretely, each first-order variable 𝑥 watches the set Bindings (𝑥) of Boolean variables 𝑏
that impose a binding on 𝑥 along with the bound term 𝑡:

Bindings (𝑥) = {(𝑏, 𝑡) | 𝑏 → (Σ ⊆ 𝜎) ∈ 𝐹 ∧ 𝑡 = Σ(𝑥)}

When the global substitution 𝜎𝜏 is updated with a variable 𝑥 newly mapped to a
term 𝑡, our SAT solver uses Bindings (𝑥) to retrieve all the Boolean variables 𝑏′ with
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an associated substitution constraint Σ′ ⊆ 𝜎 such that Σ′ (𝑥) ≠ 𝑡. The solver then
propagates 𝑏′ to false, and the propagation reason is the binary clause ¬𝑏∨¬𝑏′, where 𝑏

is the Boolean variable that caused 𝜎𝜏 (𝑥) = 𝑡.
As a result, our SAT solver ensures that Σ′ ⋒ 𝜎 implies ¬𝑏′. We perform this

propagation of incompatible substitution constraints immediately when a Boolean
variable is assigned true. This way, we enforce the invariant (30) and guarantee there
can be no conflict due to substitution constraints. Indeed, if 𝑏 ⇒ Σ ∈ 𝜎 and Σ ⋒ 𝜎𝜏 ,
then 𝑏 would have been assigned false before.

Example 6 (SAT Solving of the SAT-Based Direct Encoding of Subsumption Resolution) We
illustrate the main steps of our SAT solver using the direct encoding E 𝑑

SR (𝑆, 𝑀) of subsumption
resolution from Example 4.

A potential execution of our SAT solver on E 𝑑
SR (𝑆, 𝑀) decides 𝑏+1,3 = ⊤. This imposes,

among others, the mapping 𝑥1 ↦→ 𝑦1, and due to the compatibility constraints all other
Boolean variables are immediately propagated to false. This leads to conflicts with the
existence and some completeness constraints. Assume the solver discovers the conflict with
𝑏−3,1 ∨ 𝑏+3,3. As explained above, the reasons for propagating these literals are the implicit
binary clauses ¬𝑏+1,3 ∨ ¬𝑏

−
3,1 and ¬𝑏+1,3 ∨ ¬𝑏

+
3,3, and after resolution, the solver will backtrack,

learn the asserting clause ¬𝑏+1,3, and propagate 𝑏+1,3 = ⊥. With completeness 𝑏−1,1 ∨ 𝑏+1,3,
the solver propagates 𝑏−1,1 = ⊤, which imposes the mappings 𝑥1 ↦→ 𝑐 and 𝑥2 ↦→ 𝑑 on 𝜎𝜏 .
By compatibility, the solver now propagates 𝑏+2,1 = ⊥, 𝑏−2,3 = ⊥, and 𝑏−3,1 = ⊥. With the
remaining completeness constraints, the solver now propagates 𝑏+2,2 = ⊤ and 𝑏+3,3 = ⊤. At
this point, all Boolean variables are assigned and all constraints are satisfied, yielding the
model {¬𝑏+1,3,¬𝑏

+
2,1, 𝑏

+
2,2, 𝑏

+
3,3, 𝑏

−
1,1,¬𝑏

−
2,3,¬𝑏

−
3,1} of E 𝑑

SR (𝑆, 𝑀) from Example 4.

6.2 Pruning Subsumption Variants for SAT Solving
Reducing the number of (trivially unsat) instances of subsumption and subsumption
resolution is an important preprocessing step for increasing the effectiveness of our
SAT solving engine from Section 6.1.
Pruning subsumption. We prune unsat subsumption instances between (𝑆, 𝑀) by
checking multiset inclusion between the atoms of 𝑆, 𝑀, together with their polarities.
Intuitively, this pruning step allows to easily determine that there exists no bijective
function 𝑗 (𝑖) such that 𝜎(𝑠𝑖) = 𝑚 𝑗 (𝑖) if the atom cardinalities do not match.

More formally, let P (ℓ) compute the predicate corresponding to literal ℓ and Q (ℓ)
denote the polarity of ℓ. Our pruning criterion for subsumption is:{(

P (𝑠𝑖),Q (𝑠𝑖)
) �� 𝑠𝑖 ∈ 𝑆} ⊑ {(

P (𝑚 𝑗 ),Q (𝑚 𝑗 )
) �� 𝑚 𝑗 ∈ 𝑀

}
(31)

Theorem 8 (Pruning Subsumption) If the pruning criterion (31) is unsat, then 𝑆 does not
subsume 𝑀.

Proof The multisets {(P (𝑠𝑖),Q (𝑠𝑖)) | 𝑠𝑖 ∈ 𝑆} and {(P (𝑚 𝑗 ),Q (𝑚 𝑗 )) | 𝑚 𝑗 ∈ 𝑀} are projections 𝜋

of the multisets of literals of 𝑆 and 𝑀 respectively. This projection 𝜋 has the property to make
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its argument substitution agnostic. That is, if there exists 𝜎 such that 𝜎(𝑠𝑖) = 𝑚 𝑗 , then 𝑠𝑖 and
𝑚 𝑗 are projected on the same location; that is, (𝜎(𝑠𝑖) = 𝑚 𝑗 ) ⇒ (𝜋(𝑠𝑖) = 𝜋(𝑚 𝑗 )). Therefore, if
𝜋(𝑠𝑖) ≠ 𝜋(𝑚 𝑗 ), then there exist no matching substitution between 𝑠𝑖 and 𝑚 𝑗 . If formula (31)
is unsat, then 𝜋(𝑆) @ 𝜋(𝑀), implying that there exists no substitution 𝜎 such that 𝜎(𝑆) ⊑ 𝑀;
as such, subsumption cannot be applied between (𝑆, 𝑀). □

Pruning subsumption resolution. We similarly prune unsat instances of sub-
sumption resolution, by using a weaker version of (31). Namely, for pruning unsat
subsumption resolution instances, we only check set inclusion between the predicate
sets of 𝑆 and 𝑀: {

P (𝑠𝑖)
�� 𝑠𝑖 ∈ 𝑆} ⊆ {

P (𝑚 𝑗 )
�� 𝑚 𝑗 ∈ 𝑀

}
(32)

Theorem 9 Validity of the subsumption pruning criterion (31) implies validity of the
subsumption resolution pruning criterion (32).

Proof The sets {P (𝑠𝑖) | 𝑠𝑖 ∈ 𝑆} and {P (𝑚 𝑗 ) | 𝑚 𝑗 ∈ 𝑀} are obtained by a projection 𝜋 from
{(P (𝑠𝑖),Q (𝑠𝑖)) | 𝑠𝑖 ∈ 𝑆} and {(P (𝑚 𝑗 ),Q (𝑚 𝑗 )) | 𝑚 𝑗 ∈ 𝑀}, respectively. Therefore, for each pair
of elements (𝑒, 𝑒′) ∈ {(P (𝑠𝑖),Q (𝑠𝑖)) | 𝑠𝑖 ∈ 𝑆} × {(P (𝑚 𝑗 ),Q (𝑚 𝑗 )) | 𝑚 𝑗 ∈ 𝑀}, if 𝑒 = 𝑒′, then
𝜋(𝑒) = 𝜋(𝑒′), and the multiset inclusion is preserved. As S1 ⊑ S2 (multiset inclusion) implies
S1 ⊆ S2 (set inclusion), we obtain that (31) implies (32). □

The following is an immediate consequence of Theorems 8-9.

Corollary 3 If the pruning criterion (32) is not satisfied, then 𝑆 does not subsume 𝑀.

Similarly to Theorem 8, we use the pruning criterion (32) to detect (and delete)
unsat subsumption resolution instances between (𝑆, 𝑀).

Theorem 10 (Pruning Subsumption Resolution) If the pruning criterion (32) is unsat, then
𝑆 and 𝑀 are not side and main premises of subsumption resolution.

Proof Similarly to Theorem 8, if criterion (32) is not satisfied, then there exists a literal 𝑠𝑖 ∈ 𝑆
that cannot be matched with any literal in 𝑀; as such, the completeness constraint (9) of
subsumption resolution is violated. □

Fast implementations of pruning. To represent the predicate sets used in our
pruning criterion, we use an array A of unsigned integers whose index is the index of
the predicate. We first build the multiset with the predicates of the main premise 𝑀.
When a predicate is hit, the value stored in A is incremented, we check that 𝑆 contains
a sub-multiset of predicates, and decrement the previously stored value within 𝐴.

Storing A entries while applying pruning checks may be memory-expensive. Reset-
ting the memory before each pruning is also an expensive operation. We therefore use
a time stamp 𝑡 such that ∀𝑖. A [𝑖] < 𝑡 + |𝑀 | holds. Intuitively, before pruning is applied,
∀𝑖. A [𝑖] < 𝑡 holds. Algorithm 1 summarizes our pruning procedure using time stamps.
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Algorithm 1 Pruning algorithm for subsumption and subsumption resolution
𝑁 ← number of predicate symbols
𝑡 ← 0 ⊲ time stamp
A ← 𝑧𝑒𝑟𝑜𝑠(2 · 𝑁) ⊲ array to hold the (multi-)set
function headerIndex(𝑙)

if Q (𝑙) then ⊲ Positive polarity atom
return P (𝑙)

return P (𝑙) + 𝑁 ⊲ Negative polarity atom
procedure pruneSubsumption(𝑆, 𝑀)

if 𝑡 + |𝑀 | > UINT_MAX then ⊲ Reset before arithmetic overflow
A ← 𝑧𝑒𝑟𝑜𝑠(2 · 𝑁)
𝑡 ← 0

for 𝑚 ∈ 𝑀 do
𝑖𝑑𝑥 ← headerIndex(𝑚)
A [𝑖𝑑𝑥] ← max(𝑡,A [𝑖𝑑𝑥]) + 1

for 𝑠 ∈ 𝑆 do
𝑖𝑑𝑥 ← headerIndex(𝑠)
if A [𝑖𝑑𝑥] ≤ 𝑡 then

𝑡 ← 𝑡 + |𝑀 |
return ⊤

A [𝑖𝑑𝑥] ← A [𝑖𝑑𝑥] − 1
𝑡 ← 𝑡 + |𝑀 |
return ⊥

procedure pruneSubsumptionResolution(𝑆, 𝑀)
if 𝑡 + 1 > UINT_MAX then ⊲ Reset before arithmetic overflow

A ← 𝑧𝑒𝑟𝑜𝑠(2 · 𝑁)
𝑡 ← 0

𝑡 ← 𝑡 + 1
for 𝑚 ∈ 𝑀 do

A [P (𝑚)] ← 𝑡

for 𝑠 ∈ 𝑆 do
if A [P (𝑠)] ≠ 𝑡 then

return ⊤
return ⊥

Pruning after building match sets. While our pruning criteria (31)-(32) are fast to
compute, they do not reason about substitutions needed for subsumption (resolution).
However, while building the match sets Π(𝑆, 𝑀), we may also detect unsat instances of
subsumption and subsumption resolutions. For example, let 𝑠𝑖 = 𝑝( 𝑓 (𝑥)) be a literal of 𝑆.
If 𝑀 does not contain any literal of the form 𝑝( 𝑓 (·)), there is no unifying substitution
between (𝑆, 𝑀). The non-existence of such substitutions would not necessarily be
detected by (31)-(32), but could be recorded while building the substitution sets.
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We therefore use the following additional pruning criteria for subsumption:

∀𝑖∃ 𝑗 . Σ+𝑖, 𝑗 ≠ Σ̃ (33)

Theorem 11 (Substitution Sets for Pruning Subsumption) Let Π(𝑆, 𝑀) =
{(
𝑏±
𝑖, 𝑗

, Σ±
𝑖, 𝑗

)}
be

the match set of 𝑆 and 𝑀. If (33) is unsat, then 𝑆 does not subsume 𝑀.

Proof Theorem 4 implies that, if 𝑆 subsumes 𝑀, then ∀𝑖∃ 𝑗 . 𝑏+
𝑖, 𝑗

and ∀𝑖, 𝑗 . 𝑏+
𝑖, 𝑗
⇒ Σ+

𝑖, 𝑗
⊆ 𝜎.

Hence, ∀𝑖∃ 𝑗 . Σ+
𝑖, 𝑗
⊆ 𝜎, which is equivalent to (33) since Σ̃ ∈ 𝜎 ⇒ ⊥. Therefore, if 𝑆 subsumes

𝑀, then (33) is valid. □

A pruning criterion similar to (33) can be applied to subsumption resolution:

∀𝑖∃ 𝑗 . Σ+𝑖, 𝑗 ≠ Σ̃ ∨ Σ−𝑖, 𝑗 ≠ Σ̃ (34)

Theorem 12 (Substitution Sets for Pruning Subsumption Resolution) Let Π(𝑆, 𝑀) ={(
𝑏±
𝑖, 𝑗

, Σ±
𝑖, 𝑗

)}
be the match set of 𝑆, 𝑀. If (34) is unsat, then 𝑆 and 𝑀 are not side and main

premises of subsumption resolution.

Proof Similarly to the proof of Theorem 11, the compatibility and completeness constraints
of E 𝑑

SR (𝑆, 𝑀) imply (34). Based on Theorem 6, if 𝑆, 𝑀 are side and main premises of subsumption
resolution, then (34) is valid. □

We remark that the pruning criterion (32) is a special case of Theorem 12. Therefore,
if (32) is unsat, then (33) is also unsat and no subsumption resolution is possible.
Furthermore, if there are no negative polarity substitutions, then the existence
constraint of E 𝑑

SR(𝑆, 𝑀) does not hold. As such, a further pruning criterion for (unsat)
subsumption resolution instances is:

∃𝑖, 𝑗 . Σ−𝑖, 𝑗 ≠ Σ̃ (35)

Theorem 13 (Polarities for Pruning Subsumption Resolution) Let Π(𝑆, 𝑀) =
{(
𝑏±
𝑖, 𝑗

, Σ±
𝑖, 𝑗

)}
be the match set of 𝑆, 𝑀. If (35) is unsat, then 𝑆 and 𝑀 are not premises of subsumption
resolution.

Proof Based on Theorem 4, if E 𝑑
SR (𝑆, 𝑀) is satisfiable, then the existence property ∃𝑖, 𝑗 . 𝑏−

𝑖, 𝑗

is satisfiable and the compatibility constraint is satisfied by the same assignment. Therefore,
if E 𝑑

SR (𝑆, 𝑀) is satisfiable, then ∃𝑖, 𝑗 . Σ−
𝑖, 𝑗

≠ Σ̃. □
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Finally, if there exist two literals in 𝑆 such that they do not have positive matches to
literals in 𝑀 and the respective predicates of the literals are different, then subsumption
resolution is not possible. This yields our final pruning criterion:

∀𝑖, 𝑖′. (𝑖 ≠ 𝑖′) ⇒ (P (𝑠𝑖) = P (𝑠𝑖′ ) ∨ ∃ 𝑗 Σ+𝑖, 𝑗 ≠ Σ̃ ∨ ∃ 𝑗 Σ+𝑖′ , 𝑗 ≠ Σ̃) (36)

Theorem 14 (Predicate Matches for Pruning Subsumption Resolution) Let Π(𝑆, 𝑀) ={(
𝑏±
𝑖, 𝑗

, Σ±
𝑖, 𝑗

)}
be the match set of 𝑆, 𝑀. If (36) is unsat, then 𝑆 and 𝑀 are not side and main

premises of subsumption resolution.

Proof By contradiction, assume that subsumption resolution could be applied to (𝑆, 𝑀).
Then, there exists a unique 𝑚′ such that 𝜎(𝑆′) = {𝑚′}. However, if (36) is unsat, there exist
two different literals in 𝑆 that can only be mapped negatively to 𝑚′ (or not at all). These
literals have a different predicate, therefore they cannot be both matched to the same literals
(∀𝜎, 𝑙, 𝑙′ . P (𝑙) ≠ P (𝑙′) ⇒ 𝜎(𝑙) ≠ 𝜎(𝑙′)). If one of these literals cannot be matched to the
resolution literal of SR, and has no positive match, then it cannot be matched to any literal
in 𝑀; hence and subsumption resolution cannot be applied. □

Remark 1 It is easy to see that Algorithm 1 is a very cheap procedure. During our experiments
(Section 9, we observed that more than 95% of instances of subsumption are filtered out by
the pruning criterion (31) alone, and more than 50% are also pruned by (32). When it comes
to subsumption resolution, in our experiments 90% of subsumption resolution instances are
pruned by (32). The more restrictive nature of (34) and (35) prunes an additional 5 % of
subsumption resolution instances. As a result, our experiments show that pruning is indeed
an important and cheap preprocessing step. Thanks to pruning, in our experiments only 5%
of subsumption (resolution) instances need to use more expensive SAT-based computation
steps, using our SAT solver from Section 6.1.

7 SAT-Based Subsumption Variants in Saturation
In this section, we discuss the direct integration of the SAT solving engine of Section 6
within the saturation loop of first-order theorem proving. Such an integration greatly
improves redundancy checking in theorem proving, without making significant changes
to the underlining saturation algorithms of the prover.

To design a saturation algorithm, one important aspect is to understand how to
organise redundancy elimination during proof search. One common design principle in
this respect comes with so-called given clause algorithms [37], where inference selection
is implemented using clause selection. At each iteration of the algorithm, a clause
from the proof search is selected and inferences are performed between this clause and
previously selected clauses. When a new clause is generated, this clause should only be
kept if it is not redundant or it cannot be simplified by another existing clause; we refer
to such redundancy checks over a new clause as forward redundancy, implementing
forward simplification. On the other hand, a newly generated clause could make existing
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Algorithm 2 Forward simplification with SAT-based subsumption resolution
procedure ForwardSimplify(𝑀, 𝐹)

𝑀∗ ← NoSubsumptionResolution

for 𝑆 ∈ 𝐹 \ {𝑀} do ⊲
Get candidates from generali-
sation index.

if subsumption(𝑆, 𝑀) is Subsumed then ⊲ using Algorithm 3
𝐹 ← 𝐹 \ {𝑀}
return ⊤ ⊲ 𝑀 is subsumed and removed

if 𝑀∗ = NoSubsumptionResolution then
𝑀∗ ← subsumptionResolution(𝑆, 𝑀) ⊲ using Algorithm 4

if 𝑀∗ ≠ NoSubsumptionResolution then

𝐹 ← 𝐹 \ {𝑀} ∪ {𝑀∗} ⊲

𝑀∗ is the conclusion of sub-
sumption resolution between 𝑆

and 𝑀
return ⊤

return ⊥

clauses in the search space redundant; we call such redundancy checks with a new
clause as backward redundancy, implementing backward simplification.

Using the SAT solver of Section 6 for detecting subsumption (resolution) in satura-
tion needs therefore to (i) address both forward and backward variants of subsumption
and subsumption resolution, and (ii) organize proof search with these subsumption
variants solved via SAT. In the rest of this section, we mainly focus on forward simpli-
fication via subsumption and subsumption resolution, and briefly discuss differences
with respect to backward simplification.
Forward simplification. Intuitively, as subsumption is a stronger inference than
subsumption resolution, subsumption should be performed first. As such, a standard
forward simplification loop for subsumption (resolution) would be:

1. From a selected clause 𝑀, search some subsumption candidate clauses {𝑆𝑘 | 𝑘 =

1, . . . } using a generalisation term index [24];
2. For each clause in {𝑆𝑘 | 𝑘 = 1, . . . }, check if 𝑆𝑘 subsumes 𝑀. If this is the case,

then stop and remove 𝑀 from the clause set.
3. For each clause in {𝑆𝑘 | 𝑘 = 1, . . . }, check if 𝑆𝑘 can delete a literal from 𝑀 using

subsumption resolution. If it is the case, then replace 𝑀 by the conclusion of
subsumption resolution SR and stop.

In this approach, finding the substitutions of subsumption (resolution) comes with
a significant computation burden. Further, as subsumption checks do not succeed
most of the time, the match sets Π(𝑆𝑘 , 𝑀) must be cached or recomputed. Therefore,
when integrating our SAT-based solving of subsumption (resolution) in saturation
using Algorithm 2, we use pruning-based preprocessing and build match sets before
checking subsumption and subsumption resolution. Our Algorithm 2 yields thus a
new, SAT-based forward simplification loop for subsumption (resolution) in saturation.
Algorithm 2 uses Algorithm 3 to possibly prune both subsumption and subsumption
resolution and then set up a complete match set. Even though subsumption alone does
not require the negative polarity substitutions, these substitutions are computed for
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Algorithm 3 SAT-based subsumption in saturation

𝑓S ← ⊥ ⊲
If 𝑓S gets true then subsumption is guar-
anteed to fail

𝑓SR ← ⊥ ⊲
If 𝑓SR gets true then subsumption reso-
lution is guaranteed to fail

procedure Subsumption(𝑆, 𝑀)
𝑓SR ← pruneSubsumptionResolution(𝑆, 𝑀)
𝑓S ← 𝑓SR ∨ pruneSubsumption(𝑆, 𝑀)

⊲ Corollary 3 ensures that 𝑓SR ⇒ 𝑓S.
if 𝑓SR then

return NoSubsumption

⊲
If only subsumption fails, we still need
to fill the match set.

Π ← Π(𝑆, 𝑀)
𝑓S ← 𝑓S ∨ ¬(33) ⊲ Computed when filling Π

𝑓SR ← 𝑓SR ∨ ¬(34) ∨ ¬(35) ∨ ¬(36) ⊲ Also computed when filling Π

if 𝑓S then
return NoSubsumption

ES ← encodeConstraints(Π)
if ES |= ⊥ then ⊲ SAT solver returns unsatisfiable

return NoSubsumption
else

return Subsumed

subsumption resolution. Then, Algorithm 4 benefits from the work done by subsumption,
since it only requires to create the propositional clause set.

Remark 2 In Algorithm 2, when a subsumption resolution check was successful, no other is
performed, but the algorithm still searches for a subsumption. In this case, only a partial
match set is necessary and subsumption will not fill negative polarity matches.

The index used to provide candidate clauses returns clauses on a literal by literal manner.
That is, for each literal 𝑚 ∈ 𝑀, the index returns clauses that have at least one literal
that is a generalisation of 𝑚. However, for subsumption resolution, we also get clauses with
a generalisation of complemented literals ¬𝑚 𝑗 . In this case, we do not need to check for
subsumption, and only subsumption resolution is performed. Yet, subsumption resolution still
sets up the match set.

Backward simplification. Backward simplifications use newly generated clauses
𝑆 to simplify the current clause set 𝐹. Given a newly generated clause 𝑆, backward
subsumption (resolution) thus checks whether 𝑆 subsumes some clauses 𝑀 ∈ 𝐹 (or can
remove a literal from 𝑀). In this case, performing subsumption resolution right after
subsumption is almost free. Indeed, since backward simplifications do not stop after
simplifying one clause, the only cost of performing subsumption resolution right after
subsumption is to setup the full match set, rather than simply setting up the positive
polarity matches.

26



Algorithm 4 SAT-based subsumption resolution in saturation
for bit empty space only to get– with subsumption already set up via Algorithm 3

procedure SubsumptionResolution(𝑆, 𝑀)
⊲ upon Algorithm 3 failing to subsume
⊲ the match set Π is already set up

if 𝑓SR then
return NoSubsumptionResolution

𝑒𝑛𝑐 ← chooseEncoding(Π, 𝑆, 𝑀) ⊲ choose the best encoding (see Sect 8)
ESR ← encodeConstraints(𝑒𝑛𝑐,Π)
if ∃𝜏. 𝜏 |= ESR then ⊲ 𝜏 is a model of ESR found by the solver

return buildConclusion(𝜏, 𝑀) ⊲ conclusion of subsumption resolution
return NoSubsumptionResolution

Extensions of subsumption variants in saturation Our SAT-based approach
for solving subsumption (resolution) in saturation is very flexible. Indeed, the SAT
solver can handle different types of matches to the same literal pair, yielding further
extensions of the standard subsumption and subsumption resolution framework.

In the case of symmetric predicates, such as equality, two different substitutions
are possible. Consider the literals 𝑠𝑖 := 𝑥 = 𝑦 and 𝑚 𝑗 := 𝑐 = 𝑓 (𝑐). To match these two
literals, one can either use the substitution {𝑥 ↦→ 𝑐, 𝑦 ↦→ 𝑓 (𝑐)} or {𝑥 ↦→ 𝑓 (𝑐), 𝑦 ↦→ 𝑐}. In
this case, both substitutions would be added to the match set Π(𝑠𝑖 , 𝑚 𝑗 ) of 𝑠𝑖 , 𝑚 𝑗 . That
is, the matches ({𝑥 ↦→ 𝑐, 𝑦 ↦→ 𝑓 (𝑐)}, +, 𝑏+

𝑖, 𝑗
) and ({𝑥 ↦→ 𝑓 (𝑐), 𝑦 ↦→ 𝑐}, +, 𝑏′+

𝑖, 𝑗
) are added

to Π(𝑠𝑖 , 𝑚 𝑗 ). In our implementation of the match set, it provides a list of matches
(𝑏±

𝑖, 𝑗
, Σ±

𝑖, 𝑗
) with either 𝑖 or 𝑗 fixed. When enumerating over this list to build the clauses,

we ignore the second index. If several variables have the same index (𝑖, 𝑗), the system
will not be broken. Therefore, even when adding more than one match to the same
literal pair, the SAT encoding remains the same. In addition, both substitutions are
distinct, since otherwise one of the literals of 𝑠𝑖 or 𝑚 𝑗 is a tautology and the respective
clause would be removed. Handling of symmetric predicates brings great practical
improvements, see Remark 3.

In the case of subsumption resolution, one may use the most general unifier on the
resolution literal 𝑚′, if the variable set of 𝑚′ is disjoint from the variables in 𝑀 \ {𝑚′}.
However, within the splitting approach of the AVATAR framework [38] of first-order
proving, the prover would split upon the main premise 𝑀; hence, using most general
unifiers on the literal 𝑚′ of 𝑀 would not be triggered.

8 Solving Heuristics for Subsumption Variants
Section 7 introduced efficient algorithms for integrating SAT-based subsumption
reasoning in saturation. In this section, we further improve our methods from Section 7
by identifying and fine-tuning the key parameters of our SAT-based subsumption
algorithm in saturation. Doing so, we (i) impose a solving timeout on particularly
difficult subsumption and subsumption resolution instances (Section 8.1), and (ii)
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devise a framework for choosing the best SAT encodings for subsumption resolution
(Section 8.2).

8.1 Cutting off the SAT Search
We present how to fine-tune a timeout strategy for our SAT solver from Section 6, in
order to prevent getting it stuck on unnecessary/difficult subsumption instances, while
solving still as many positive instances as possible.

8.1.1 Measuring SAT Solver Progress

In general, the solver behaviour should be as deterministic as possible to ensure results
are consistent and reproducible. Elapsed wall-clock time depends on many factors such
as the type of machine and current load, and elapsed CPU time and number of CPU
instructions easily change when refactoring code. As such, these measures are unsuitable
when a deterministic solver behavior, and respective progress measure, is expected.

For evaluating our SAT solving approach in saturation, we therefore follow the
Kissat methodology [39]: we count the number of elapsed ticks, which is a rough
approximation of the number of memory cache lines accessed during unit propagation
and conflict analysis.

8.1.2 Empirical Observations

In our experiments (see Section 9), we evaluated our approach using the TPTP problem
library [40]. Here, we logged the number of ticks the SAT solver performs on each
problem and whether its search was successful. Figure 1a shows how the success rate of
subsumption drops close to zero when our SAT solver runs longer. This effect is even
more noticeable with subsumption resolution, as can be seen on Figure 1b. We note
that the performance jumps of Figures 1a–1b when crossing 10𝑘 ticks are due to the
non-linear scale used when aggregating data. We keep two significant digits to reduce
the size of the files. Therefore, when jumping from 9.9 · 10𝑘−1 to 1.0 · 10𝑘 , the size of
the interval is multiplied by 10, hence a greater number of instances are gathered, and
the line is discontinuous.

For improved solving progress, we aim to estimate a good trade-off between losing
solutions by stopping the search early and the number of ticks saved. To do so, (i) we
compute the number of ticks that the SAT solver has performed on instances that
would be timed out; (ii) subtract the number of ticks ran before the timeout; and (iii)
divide the result by the total number of ticks. Figure 2 shows that, when using a cutoff
of 150, less than 1% of the successful instances are lost, while around 50% of ticks are
saved for subsumption and 35% for subsumption resolution. Interestingly, when using
a cutoff of 5000, we loose less than 0.01% of problems while still saving 10% of ticks.

8.2 Choosing SAT Encodings for Subsumption Resolution
Section 5 introduced two different encodings for subsumption resolution over (𝑆, 𝑀).
The direct encoding E 𝑑

SR(𝑆, 𝑀) has 𝑂 ( |𝑆 |2 · |𝑀 |2) clauses and 𝑂 ( |𝑆 | · |𝑀 |) variables,
while the indirect encoding E 𝑖

SR(𝑆, 𝑀) contains 𝑂 ( |𝑆 | · |𝑀 |) clauses with 𝑂 ( |𝑆 | · ( |𝑀 | +1))
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(a) Solving subsumption instances.
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(b) Solving subsumption resolution instances using a direct SAT encoding

Figure 1: Success rates of the SAT solver depending on the number of ticks (ticks are
displayed on the horizontal axes). The problems taking the longest time are less likely
to succeed.

variables. Intuitively, the direct encoding E 𝑑
SR(𝑆, 𝑀) should to be more light weight and

faster for smaller instances of subsumption resolution, whereas the indirect encoding
E 𝑖
SR(𝑆, 𝑀) should scale better on harder instances. In this section, we present a procedure

to choose which encoding to use for a given instance of subsumption resolution.
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(c) SR indirect encoding

Figure 2: Trade-off between positive instances lost when cutting off, and the number
of ticks saved.

8.2.1 Problem Setup

We focus on the problem of choosing SAT encodings of subsumption resolution.
We approximate this problem via a random distribution D (𝑦 |𝑥), where
• input 𝑥, drawn from another distribution X , is a vector of features 𝑥1, . . . , 𝑥𝑛;
• output 𝑦 is a pair of values (𝑦0, 𝑦1), where 𝑦0 is the encoding and SAT solving time

of the direct encoding E 𝑑
SR(𝑆, 𝑀) and 𝑦1 is the encoding and SAT solving time of the

indirect encoding E 𝑖
SR(𝑆, 𝑀).

Objective function. Let a function family F be a set of functions 𝑓 : R𝑛 → {0, 1}.
We define our objective function over D (𝑦 |𝑥) and X as follows:

argmin
𝑓 ∈F
E 𝑥∼X
(𝑦0 ,𝑦1 )∼D ( · |𝑥 )

[
𝑦 𝑓 (𝑥 )

]
(37)

Intuitively, our objective function (37) computes a classifier 𝑓 whose choice, given a
set of features, minimises the expected run time of the respective SAT encoding and
solving of subsumption resolution.
Features. For any classification problem, identifying relevant features is important.
We chose the following features for our classifier 𝑓 computed by (37):

1. the number 𝑛 of literals of the main premise 𝑀;
2. the number 𝑘 of literals of the side premise 𝑆;
3. the “sparsity” of the match set Π(𝑆, 𝑀), computed as : |Π |

𝑘 ·𝑛 , where |Π | denotes the
size of the match set Π(𝑆, 𝑀).

The relevance of the respective lengths 𝑘, 𝑛 of the premises 𝑆, 𝑀 is fairly self-
explanatory, as the numbers of clauses of both SAT encodings grow differently with the
number of literals of 𝑆, 𝑀. The sparsity of the match set Π(𝑆, 𝑀) is a measure of how
many matches are found between literals of the main and side premises 𝑀, 𝑆. Sparsity of
the match set is a good indicator of the difficulty of the subsumption resolution problem.
Indeed, if the match set Π(𝑆, 𝑀) is very sparse, then the subsumption resolution
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problem is easy: there are few matches to consider and the purely propositional clauses
are already very constrained. On the other hand, if the match set Π(𝑆, 𝑀) is dense,
then the subsumption resolution problem is hard.

Remark 3 The sparsity of the match set may be greater than 1. Indeed, in practice, we perform
matching modulo the symmetry of equality (see Section 7). In such cases, one could use more
than one match for a given literal pair.

8.2.2 Model Architecture

The problem described in Section 8.2.1 is formalized as a classification problem in (37).
Indeed, given a set of features 𝑥, we classify our problems sample into one of two classes:
using the direct encoding E 𝑑

SR(𝑆, 𝑀) (class value 0) or using the indirect encoding
E 𝑖
SR(𝑆, 𝑀) (class value 1). For solving the problem of Section 8.2.1, we select the SAT

encoding of subsumption resolution over (𝑆, 𝑀) that is likely to be solved the fastest
way. Our classification procedure should thus be fast to compute at compiler time. We
therefore use a decision tree as our classifier, where our decision tree is a set of if then
else expressions. We used the scikit-learn [41] library to train our decision tree.

8.2.3 Building the Dataset

Sampling. We construct the set of samples (𝑥, 𝑦) from the distributions X , D0 and D1,
respectively corresponding to the subsumption resolution input (𝑆, 𝑀) drawn from the
distribution X and their direct E 𝑑

SR(𝑆, 𝑀) and indirect encodings E 𝑖
SR(𝑆, 𝑀) modeling

the distribution D0(𝑦0 | 𝑥) and D1(𝑦1 | 𝑥) respectively. To do so, we recorded the
saturation running time of any subsumption resolution inference that reaches the SAT
solving procedure. Indeed, if the subsumption instance is pruned, both encoding will
behave exactly the same and the sample is irrelevant. We also recorded the features of
the subsumption resolution check, that is, the length of the premises, and the sparsity.
Each problem is run twice, once with the direct encoding E 𝑑

SR(𝑆, 𝑀), and another with
the indirect encoding E 𝑖

SR(𝑆, 𝑀). As a result, we obtain two sets of samples samples
(𝑥, 𝑦), one for each encoding of subsumption resolution. We pair these samples to form
(𝑥, 𝑦0, 𝑦1).
Condensing the dataset. Decision trees cannot be trained online, nor with mini-
batches. Traditionally, when facing a large dataset, the classical method is to segment
it into small batches, and train the model on randomly sampled batches [42]. However,
this approach is not supported within the decision trees of the scikit-learn library.
We therefore build a new dataset by summing the run times of all the samples that
have the same features. That is, we build a new dataset S of (𝑥, 𝑦0, 𝑦1) samples, where
𝑥 describes the feature and 𝑦0 and 𝑦1 are the respective sums of the run times of all
the samples that have the same features 𝑥.
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Modified objective function. We adjust our objective function to our new dataset
S , as follows:

argmin
𝑓 ∈F

∑︁
(𝑥,𝑦0 ,𝑦1 ) ∈S

[
|𝑦0 − 𝑦1 | ∗ ( 𝑓 (𝑥) − 𝐻 (𝑦0 − 𝑦1))2

]
(38)

where 𝐻 is the step function, i.e., 𝐻 (𝑎) = 1 if 𝑎 ≥ 0, and 𝐻 (𝑎) = 0 otherwise.
The optimisation problem (38) is an empirical version of (37). Intuitively, (38)

introduces more weight to samples with a large difference of efficiency between both
SAT encodings |𝑦0 − 𝑦1 |. A choice of a SAT encoding of subsumption resolution is
considered “wrong" if (i) 𝑓 (𝑥) predicted 0 and the indirect encoding E 𝑖

SR(𝑆, 𝑀) is faster
than the direct encoding E 𝑑

SR(𝑆, 𝑀); or (ii) 𝑓 (𝑥) predicted 1 and the indirect encoding
E 𝑖
SR(𝑆, 𝑀) is slower than the direct encoding E 𝑑

SR(𝑆, 𝑀). That is, 𝑓 (𝑥) − 𝐻 (𝑦0 − 𝑦1) is 1
or −1 on wrong choices of SAT encodings, and 0 on correct choices.
Evaluating the model. We introduce a metric called the advantage of the model
over a function to evaluate the performance of our classifier 𝑓 from (38). We introduce
three baseline classifiers to compare our model to:

1. the direct encoding 𝑑 (𝑥) = 0 always chooses the direct encoding E 𝑑
SR(𝑆, 𝑀) for

sample 𝑥;
2. the indirect encoding 𝑖(𝑥) = 1 always chooses the indirect encoding E 𝑖

SR(𝑆, 𝑀) for
sample 𝑥;

3. the perfect model 𝑝S (𝑥) always chooses the fastest encoding for sample 𝑥, being
defined as:

𝑝S (𝑥) =
{
0 if ∃(𝑥, 𝑦0, 𝑦1) ∈ S ∧ 𝑦0 < 𝑦1

1 otherwise
(39)

We then set the advantage of the model 𝑓 over a function 𝑔 on a dataset S as:

𝐴𝑑𝑣( 𝑓 , 𝑔, S ) =
∑
(𝑥,𝑦0 ,𝑦1 ) ∈S

[
𝑦𝑔 (𝑥 )

]∑
(𝑥,𝑦0 ,𝑦1 ) ∈S

[
𝑦 𝑓 (𝑥 )

] (40)

Naturally, the higher the advantage 𝐴𝑑𝑣( 𝑓 , 𝑔, S ) is, the better the model 𝑓 performs.
Note that advantage over the perfect model is always less than or equal to 1.

8.2.4 Choosing the Depth of the Decision Tree

Training, validation and test sets. We divided our dataset into a test set and a set
of pairs of training and validation sets. More precisely, we chose to segment our dataset
S into 11 segments, namely S0, . . . , S10. Here, S0 is kept for the final testing phase while
the remaining 10 segments of S are used to generate pairs (S𝑖 ,

⋃
𝑗≠𝑖 S 𝑗 ) for 𝑖 = 1, . . . , 10.

Choosing the right depth. Decision trees have the ability to match arbitrary
functions if they are deep enough and the training set is sufficiently large. However,
this is not desirable for two reasons: (i) the deeper the tree is, the more code will have
to be added; and (ii) the deeper the tree is, the more susceptible it is to overfitting.
We therefore need to find a proper depth for our decision tree. To do so, for each
𝑖 = 1, . . . , 10, we train a decision tree for each depth 𝑑 = 1, . . . , 15 on the set

⋃
𝑗≠𝑖 S 𝑗 and
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evaluate the performance on the validation set S𝑖. Figure 3 shows that the performance
gains are mostly achieved by trees of depth lower than 3. As such, we empirically chose
to use a decision tree of depth 3 in our framework,

Figure 4c summarizes the decision tree resulting from the training. As only two
leaves prefer the direct encoding, this tree can be summarised and optimised into the
following pseudo-code on Figure 5.
Evaluating the model. Once our decision tree is trained, we can evaluate its
performance on the test set. Because of the very large dataset available and the limited
number of features, no overfitting was observed. The predictor has an advantage of
1.024 over the indirect encoding, and 0.995 over the ideal predictor. This method could
be further improved by adding new encodings, or by increasing the feature space.

9 Experimental Results
We implemented our SAT-based framework for solving subsumption and subsumption
resolution in the Vampire theorem prover [16]. We next discuss the evaluation and
results of our approach.
Benchmarks. We use the TPTP library [40] (version 8.1.2) as the benchmark source for
our experiments. This version of the TPTP library contains altogether 25,257 problems
in various languages. Out of these examples, 24,973 problems have been included in our
evaluation of SAT-based subsumption and subsumption resolution in Vampire. The
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Figure 3: Advantage of the model over the perfect model for different depths. The
green dashed line shows the baseline advantage of the indirect SAT encoding over the
perfect model.
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(c) Depth 3

Figure 4: Decision trees of different depths. The orange nodes choose the indirect
encoding, and the blue nodes choose the direct encoding.
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i f ( | S | <= 3 ) :
i f ( |M| <= 5 and s p a r s i t y <= 1 . 0 7 5 ) :

return d i r e c t
e l i f ( |M| <= 9 ) :

return d i r e c t
return i n d i r e c t

Figure 5: Decision tree from Figure 4c in pseudo-code.

remaining TPTP problems that we did not use for our experiments requires features
that Vampire currently does not support (e.g., higher-order logic with theories).
Experimental Setup. All our experiments were carried out on a cluster at TU Wien,
where each compute node contains two AMD Epyc 7502 processors, each of which has
32 CPU cores running at 2.5GHz. Each compute node is equipped with 1008GiB of
physical memory that is split into eight memory nodes of 126 GiB each, with eight logical
CPUs assigned to each node. We used the runexec engine from the benchmarking
framework BenchExec [43] to assign each benchmark process to a different CPU core
and its corresponding memory node, aiming to balance the load across memory nodes.
Further, we used GNU Parallel [44] to schedule 32 benchmark processes in parallel.
Ensuring consistent progress. For several of the subsequent experiments, we perform
relatively expensive computation and/or logging in addition to the measured solving
process. While this instrumentation does not affect the measurements per se, it will
reduce the progress the solver can make in the saturation algorithm within a fixed
duration of wall-clock time. To avoid this effect, we first performed a run of Vampire
without any expensive instrumentation and a time limit of 60 seconds, and report for
each TPTP problem the number of times the forward simplification loop has been
called. For all subsequent Vampire runs that involve instrumentation, we do not
impose a time limit, but instead terminate after performing the previously reported
number of forward simplification loops.

9.1 Measuring Speed Improvements for Subsumption
We first measured the cost of subsumption checks in isolation. A similar evaluation
has previously been done for indexing techniques in first-order provers, see [25].
Methods Considered. We first ran Vampire with a timeout of 60 seconds on each
TPTP problem, while logging each subsumption check into a file. Each of these files
then contains a sequence of subsumption checks, which we call the subsumption log
for a problem. This preparatory step led to a large number of benchmarks that are
representative for subsumption checks that appear during actual proof search. These
benchmarks occupy 1.79TiB of disk space in compressed form, and contain about
278 billion subsumption checks in total. About 0.6% of these subsumption checks
are satisfiable (1.7 billion), while the rest is unsatisfiable. We note that we removed
5530 TPTP problems from this experiment, because Vampire was unable to parse back
the output it generated during the logging phase. format for higher-order problems that
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Prover Subsumption Boost
VampireM 35.86 ℎ
VampireSat 13.68 ℎ 2.62 x

Table 1: Total time spent on subsumption
checks, summed over 19437 TPTP problems.
Note that Vampire𝑀 timed out on 6 prob-
lems during subsumption replay; these have
not been included in the total.

Figure 6: Total running time (in seconds)
of backtracking-based vs. SAT-based sub-
sumption, where each mark represents
a TPTP problem. For marks below the
dashed line, our SAT-based approach was
faster.

we have been unable to correct in time. However, the successfully replayed subsumptions
amount to about 258 billion subsumption checks (93% of the collected).

Next, we executed the checks listed in each subsumption log and measured the
total running times, once for the existing backtracking-based subsumption algorithm
of Vampire, and once for our SAT-based subsumption approach in Vampire.
Results. The results of this experiment are given in Figure 6 and Table 1. Each mark
in Figure 6 represents one subsumption log from a TPTP problem, and compares
the total running time of executing all subsumption checks contained in the log with
the old backtracking-based algorithm vs. the new SAT-based algorithm. The dashed
line indicates equal runtime, hence, our SAT-based approach was faster for marks
below the line. In Table 1, we give the cumulative time used for subsumption. For the
six TPTP problems LCL673+1.015, LCL673+1.020, NLP023+1, NLP023-1, NLP024+1,
and NLP024-1, the old backtracking-based subsumption algorithm of Vampire did
not terminate within a time limit of 1200 s; these problems are not included in the
cumulative sum.

Overall, our results show a clear improvement of the running time of subsumption
in Vampire, yielding an improvement by a factor of 2.5.

9.2 Measuring Speed Improvements for Subsumption Resolution
Whereas subsumption instances can be separated from the rest of the execution, efficient
subsumption resolution cannot. As explained in Section 6, subsumption resolution is
applied in a simplification loop that optimised the setup between subsumption and
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Algorithm 5 Evaluation of SAT-based subsumption resolution
procedure ForwardSimplifyWrapper(𝑀, 𝐹)

𝑠← StartTimer()
𝑟 ← ForwardSimplify(𝑀, 𝐹) ⊲ Benchmarked method

⊲ Prevent modification of 𝐹
𝑒 ← EndTimer()
WriteToFile(𝑒 − 𝑠)
𝑟 ′ ← Oracle(𝑀, 𝐹)
CheckCoherence(𝑟, 𝑟 ′) ⊲ Empiric check
return 𝑟 ′

subsumption resolution. It would thus be an unfair comparison to isolate subsumption
resolution from subsumption. This is why we decided to measure the runtime of
subsumption and subsumption resolution together in a forward simplification loop.

Our experimental procedure is summarized in Algorithm 5 and commented below.
• The conclusion clause of the subsumption resolution rule SR is not necessarily unique.

Therefore, different versions of subsumption resolution, including our work based on
direct and indirect SAT encodings, may not return the same conclusion clause of SR.
Hence, applying different versions of subsumption resolution over the same clauses
may change the saturation process.
• Saturation with our SAT-based subsumption resolution takes advantage of subsump-

tion checking (see Algorithms 2–4). Therefore, only checking subsumption resolution
on pairs of clauses is not a fair nor viable comparison, as isolating subsumption
checks from subsumption resolution is not what we aimed for (due to efficiency).
• CPU cache influences results. For example, two consecutive runs of Algorithm 2 may

be up to 25% faster on second execution, due to cache effects.
• CheckCoherence(𝑟, 𝑟 ′) is an empiric check that ensures that the result of the

oracle is compatible with the result of the benchmarked method.
Oracle. The oracle used in our experiments is the fastest method overall. The motiva-
tion of this choice is to maximise the number of sample points compared to the total
computation time. Indeed, a slower oracle will prevent Vampire to progress faster.
The oracle therefore runs the dynamic encoding (heuristic encoding selection) with
loop optimisation.
Methods considered. We compared the following versions of Vampire:

• Vampire𝑀 – the master branch of Vampire (commit a47e1dca9), without SAT-
based subsumption and subsumption resolution;

• Vampire𝐷 – the SAT-based version of Vampire using the direct encoding E 𝑑
SR;

• Vampire𝐼 – the SAT-based version of Vampire using the indirect encoding E 𝑖
SR;

• Vampire𝐻 – the SAT-based version of Vampire using the heuristic discussed in
Section 8.2;

• Vampire∗E – using the loop optimisation discussed in Section 7 with the encoding E
(note that the loop optimisation does not apply to the non-SAT version);

• Vampire-cutoff-𝑛 – uses a cutoff at 𝑛 ticks, as discussed in Section 8.1.
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Results. In Table 2, the average and standard deviation of the runtime of the forward
simplification loop have been logged for the considered versions. The column Boost is
the ratio between the average runtime of Vampire𝑀 and the method considered. From
the table, we can see that the simplest version of our algorithm, that is, the direct
encoding without loop optimisation, already performs better than the old backtracking-
based algorithm. Introducing the indirect encoding creates a large drop in variance,
indicating that E 𝑖

SR is more stable and scalable. The loop optimisation further improved
performance by sharing work in the encoding setup. Finally, choosing the encoding
based on the heuristic discussed in Section 8.2 brings another small improvement
boost. Overall, we obtained an improvement in performance by a factor of 1.36 on the
simplification loop.

When considering these results with our previous analysis of subsumption alone
(Section 9.1), it is worth mentioning that they are not comparable. While the evaluation
method in Section 9.1 allows a direct comparison of the backtracking-based subsump-
tion implementation to the SAT-based approach, such an evaluation is not suitable for
subsumption resolution, especially when considering the optimized simplification loop
(Section 7). Indeed, our second benchmarking technique (this section) includes all com-
ponents of the simplification loop, including obtaining candidate clauses. In particular,
this means we also measure improvements obtained by optimizing the simplification
loop itself.

Remark 4 In [29], we observed a large drop in variance from the standard to the optimised
simplification loop. Improving the memory usage of the pruning algorithms in Section 6.2
greatly reduced this unexpected behaviour. In [29], we used a standard C++ vector that was
cleared between pruning runs. However, some problems in the TPTP library have very large
signatures. On these instances, the subsumption execution time has been greatly impacted
by the calls to our simpler pruning algorithm from [29]. Namely, in the standard saturation
loop, pruning was executed once for subsumption and once for subsumption resolution. As
discussed in Section 6, a large proportion of subsumption pruning checks are unnecessary if
the subsumption resolution pruning criterion fails first. Our fast implementations of pruning
from Section 6.2 greatly reduced this effect from [29].

Figure 7 shows the cumulative number of forward simplification loops performed in
less then 𝑡 𝜇𝑠 for some methods. We can visually see that our method performs better
than the previous implementation even for the easier instances, and further increasing
its advantage on harder instances. The loop optimisation shows most its strength in
the 10 to 20 𝜇𝑠 region before almost getting caught up by the non-optimised loop. The
reason is that the optimisation only improves the polynomial setup of the algorithm,
that becomes less relevant as the exponential nature of the problem takes over.

9.3 Overall Vampire Runs
We finally analysed the the number of problems Vampire solves depending on various
implementations of the subsumption and subsumption resolution procedure. Table 3
summarizes our findings and we draw the following conclusions.
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Prover Average Std. Dev. Boost
Vampire𝑀 33.63 𝜇𝑠 1839.25 𝜇𝑠 1.00
Vampire𝐷 28.74 𝜇𝑠 1245.88 𝜇𝑠 1.17
Vampire𝐼 28.36 𝜇𝑠 243.38 𝜇𝑠 1.19
Vampire𝐻 28.16 𝜇𝑠 233.87 𝜇𝑠 1.19
Vampire∗

𝐷
25.38 𝜇𝑠 1241.86 𝜇𝑠 1.32

Vampire∗
𝐼

24.93 𝜇𝑠 196.38 𝜇𝑠 1.35
Vampire∗

𝐻
24.73 𝜇𝑠 190.69 𝜇𝑠 1.36

Table 2: Average time spent in the forward simplify loop. Vampire∗
𝐻

is the fastest
method, closely followed by the Vampire∗

𝐼
. The versions Vampire∗E integrate the loop

optimisation discussed in Section 7 into VampireE .
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Figure 7: Cumulative instances of applying subsumption resolution, using the TPTP
examples. A point (𝑡, 𝑛) on the graph means that 𝑛 forward simplify loops were executed
in less than 𝑡 𝜇𝑠. The higher the curve, the faster the Vampire version is. The difference
between the different encoding being small relative to the difference the optimisation
brings, we only displayed the dynamic encoding to avoid superposition of plot lines.

• Each SAT-based configuration of subsumption solves more problems than the previ-
ous, backtracking-based implementation of subsumption, showing the superiority of
our method in solving subsumption and subsumption resolution.
• Our heuristic approach using decision trees of Section 8 solves slightly more problems

than the other SAT-based only methods of Section 7. We remark that we trained
our decision trees on a dataset built from the exact problems we are testing our
methods against, with the purpose of maximizing the number of solved problems.
We note that our methodology might suffer from (minimial) overfitting: we used
a very rigid classification algorithm with a very low potential for overfitting. It is
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Prover Total Solved Gain/Loss
Vampire𝑀 10 728 baseline
Vampire𝐷 10 762 (+62, −28)
Vampire𝐼 10 760 (+63, −31)
Vampire𝐻 10 764 (+64, −28)
Vampire–cutoff-5000𝐻 10 766 (+65, −27)
Vampire–cutoff-150𝐻 10 739 (+56, −45)
Vampire∗

𝐷
10 791 (+94, −31)

Vampire∗
𝐼

10 785 (+92, −35)
Vampire∗

𝐻
10 794 (+97, −31)

Vampire–cutoff-5000∗
𝐻

10 790 (+97, −35)
Vampire–cutoff-150∗

𝐻
10 768 (+93, −53)

Table 3: Number of TPTP problems solved by the considered versions of Vampire.
The run was made using the options -sa otter -av off with a timeout of 60 s. The
Gain/Loss column reports the difference of solved instances compared to Vampire𝑀 .
The versions Vampire∗E integrate the loop optimisation discussed in Section 7 into
VampireE .

unlikely that a decision tree with such a low depth and few features will learn how
to solve specific problems, but not learn general trends.
• Our cutoff method from Section 8.1 did not bring great improvements. While this

result may sound discouraging, we believe it actually strengthens our contributions
from Section 7. Indeed, it shows that only finding the simple subsumption and
subsumption resolution instances is not an effective strategy. While our methods
from Section 7 might not be the fastest for small clauses, they scale well with the
complexity of the problem.
• The saturation loop optimisation techniques, e.g. forward simplifcation from Section 7,

bring the largest increase in number of problems solved. This follows our intuition
built from Table 2. We however note that our loop optimisation techniques may
lose slightly more problems than their un-optimised loop versions. This is because
our loop optimisation methods may perform some unnecessary and potentially hard
subsumption resolutions, slightly increasing the likelihood of being stuck on difficult
combinatorial problems.

10 Related Work
Subsumption and subsumption resolution are some of the most powerful and frequently
used redundancy criteria in saturation-based first-order theorem proving.
Subsumption. While efficient literal- and clause-indexing techniques have been
proposed [26, 45], optimising the matching step among multisets of literals, and hence
clauses, has so far not been addressed. Our work shows that SAT solving methods can
provide efficient solutions in this respect, further improving first-order theorem proving.

40



A related approach that integrates multi-literal matching into indexing is given
in [24], using code trees. Code trees organise potentially subsuming clauses into a tree-
like data structure with the aim of sharing some matching effort for similar clauses.
However, the underlying matching algorithm uses a fixed branching order and does
not learn from conflicts, and will thus run into the same issues on hard subsumption
instances as the standard backtracking-based matching.

The specialised subsumption algorithm DC [46] is based on the idea of separating
the clause 𝑆 into variable-disjoint components and testing subsumption for each
component separately. However, the notion of subsumption considered in that work is
defined using subset inclusion, rather than multiset inclusion. For subsumption based
on multiset inclusion, the subsumption test for one variable-disjoint component is no
longer independent of the other components.

An improved version of [46] comes with IDC [47], whereupon each recursion level
is checked whether each literal of 𝑆 by itself subsumes 𝑀 under the current partial
substitution, which is a necessary condition for subsumption. The backtracking-based
subsumption algorithm of Vampire uses this optimisation as well, and our SAT-based
approach also implements it as propagation over substitution constraints.

By combining subsumption and resolution into one simplification rules, subsump-
tion resolution is supported as contextual literal cutting in [17], along with efficient
approaches for detecting multiset inclusions among clauses [15, 26, 48]. Special cases
of unit deletion as a by-product of subsumption tests are also proposed in [45], with
further refinements of term indexing to drastically reduce the set of candidate clauses
checked for subsumption (resolution).

SAT- and SMT-based techniques have previously been applied to the setting of first-
order saturation-based proof search, e.g. in the form of the Avatar architecture [38].
These techniques are, however, independent from our work, as they apply the SAT- or
SMT-solver over an abstraction of the input problem, while in our work we use a SAT
solver to speed up certain inferences.

Some solvers, such as the pseudo-boolean solver MiniCard [49] and the ASP solver
Clasp [50], support cardinality constraints natively, in a similar way to our handling of
at-most-one constraints. Our encoding, however, requires only at-most-one constraints
instead of arbitrary cardinality constraints, thus simplifying the implementation.

Note that clausal subsumption can also be seen as a constraint satisfaction problem
(CSP). In this view, the boolean variables 𝑏+

𝑖 𝑗
in our subsumption encoding represent

the different choices of a non-boolean CSP variable, corresponding to the so-called direct
encoding of a CSP variable [51]. A well-known heuristic in CSP solving is the minimum
remaining values heuristic: always assign the CSP variable that has the fewest possible
choices remaining. We adapted this heuristic to our embedded SAT solver and used it
to solve subsumption instances [28]; however, it does not fit the subsumption resolution
encodings well, especially the indirect encoding. Moreover, the advantage over the well-
known variable-move-to-front (VMTF) heuristic [52] is minor even for subsumption,
which is why we now always use VMTF for variable selection in the SAT solver.

We finally remark that redundancy is explored in SAT-based equivalence check-
ing [53], by using first-order and QBF reasoning for subsumption checks [23]. In
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particular, first-order backward subsumption [24] has become a key preprocessing tech-
niques in SAT solving, in particular in bounded variable elimination [54, 55]. Our work
complements this line of research by showcasing that SAT solving also improves solving
variants of first-order subsumption, not just the other way around.

11 Conclusion
We promote tailored SAT solving to solve clausal subsumption and subsumption
resolution in first-order theorem proving. We introduce substitution constraints to
encode subsumption constraints as SAT instance. For solving such instances, we adjust
unit propagation and conflict resolution in SAT solving towards a specialized treatment
of substitution constraints and at-most-one constraints. Crucially, our encoding together
with our SAT solver enables efficient setup of subsumption and subsumption resolution
instances. We show that the resulting SAT solver can directly be integrated within
the saturation loop of first-order theorem proving, solving both subsumption and
subsumption resolution. Our experimental results indicate that SAT-based subsumption
and subsumption resolution significantly improves the performance of first-order proving.
Extending subsumption with theory reasoning with equality, possibly in the presence of
(arithmetic) first-order theories, is an interesting task for future work. We believe this
would open up potentially new venues for using SMT solving instead of SAT solving
for subsumption reasoning.
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