
Université de Liège - Faculté des Sciences

Appliquées

Chronological vs. Non-Chronological
Backtracking in SMT

Travail de fin d’études réalisé en vue de l’obtention du grade de master Ingénieur
Civil en Informatique par Coutelier Robin

Promoteur Académique: Pr. Fontaine Pascal

Année académique 2022-2023

Abstract

SMT solvers are a powerful tool used in many verification applications. They are designed to
check the satisfiability of a logic formula in a given set of theories. The core of many SMT
solvers is a fine-tuned SAT solver enhanced with more expressive theory reasoners. Recently,
SAT solvers have seen a different paradigm emerge with the re-introduction of Chronological
Backtracking. This new approach has already shown some improvements on state-of-the-art
standalone SAT solvers. In the following, we detail the functioning of CDCL solvers and the
assumptions that non-chronological backtracking enables. After that, we study what it takes
to convert a standard SAT solver to support chronological backtracking. We discuss both
necessary and optional changes to the solver and present algorithms for each of them. We
implement these changes on the SAT solver of veriT, an SMT solver written in C. Finally, we
consider some details when adapting the SMT solver to support chronological backtracking.
We present ideas for future work and discuss the potential benefits of this new approach.

Contents

1 Background Knowledge 5

1.1 Logic Notations . 5

1.2 Propositional Resolution Rule . 8

2 SAT Solving 9

2.1 Boolean Satisfiability Problem . 9

2.2 DPLL Algorithm . 11

2.2.1 Boolean Constraint Propagation . 11

2.2.2 Search . 11

2.2.3 Soundness, Completeness and Complexity 13

2.2.4 Discussion of the DPLL Algorithm . 13

2.3 CDCL Algorithm . 14

2.3.1 CDCL Algorithm Overview . 15

2.3.2 Boolean Constraint Propagation . 16

2.3.3 Conflict Analysis . 18

2.3.4 Learning and Backtracking . 24

2.3.5 Decision . 25

2.3.6 Purging Clauses . 25

2.3.7 Soundness and Complete . 25

2.3.8 Advantage over DPLL . 26

3 Chronological Backtracking 27

3.1 Motivation . 27

3.2 Modifications on the CDCL Algorithm . 28

3.2.1 Backtracking . 28

3.2.2 Broken Invariants . 28

3.3 Missed Lower Implications . 32

4 Chronological Backtracking in veriT 35

4.1 Weak Chronological Backtracking . 36

4.1.1 Greedy Conflict Resolution . 36

4.1.2 Watched Literals . 38

4.1.3 Blockers . 39

4.1.4 Purge . 41

4.2 Strong Chronological Backtracking . 41

2

2023 Robin Coutelier CONTENTS

4.2.1 Backtracking . 42
4.2.2 Multiple Unit Clauses . 42
4.2.3 Missed Lower Implications . 43
4.2.4 Topological Consistency . 47

4.3 Complete Algorithm . 53

5 SMT Solving 62
5.1 Components of an SMT solver . 63

5.1.1 SAT Solver . 64
5.1.2 Theory Reasoner . 66
5.1.3 SAT Solver and Theory Reasoner . 68

5.2 Chronological Backtracking in SMT . 68
5.3 Status of the Implementation in veriT . 72

6 Conclusion and Future Work 73

3

2023 Robin Coutelier CONTENTS

Introduction

SMT solving is a powerful technique used in many applications such as model checking,
program verification and theorem proving [2, 27]. A typical SMT solver will use a SAT
solver to find models of a weakened version of the input problem, then refine the search by
adding new propositional constraints to the SAT solver. This incremental approach has the
property of asking mostly satisfiable queries to the SAT solver. Nadel et Al. and Möhle et al.
[22, 19, 21] re-introduced and formalized a different paradigm for SAT solving that performs
particularly well on satisfiable instances. This paradigm is called Chronological Backtracking
(CB). In this thesis, we first detail the standard DPLL and CDCL algorithms used by modern
SAT solvers. Then, we present the key ideas behind chronological backtracking as portrayed
in the literature. We then explain the algorithms used in veriT to convert the SAT solver to
CB. To that effect, we present a weak and strong version of chronological backtracking. Weak
chronological backtracking only implements a minimal set of changes to obtain a sound and
complete SAT solver. Strong chronological backtracking adds some complications to ensure
that no implication is missed. This includes what [21] calls missed lower implications and
how it is handled under constraints of minimal change to the core data structures of the SAT
solver. We provide efficient algorithms to preserve the topological order of the trail after
re-implication of literals. Finally, we discuss the impact chronological backtracking will have
on the SMT solver. We explore some ideas on enhancement of the SAT solver’s interface to
allow for more efficient SMT solving. We explore some potential pitfalls of the conversion
and how the interface between the SAT and SMT solver can be modified to avoid them.

The SAT solver of veriT was modified to implement both the weak and strong chronological
backtracking algorithms. The code is theoretically motivated and empirically checked. How-
ever, the conversion of the SMT solver still remains theoretical. In future work, we intend to
implement chronological backtracking in the new modular SMT solver: modulariT.

4

Chapter 1

Background Knowledge

1.1 Logic Notations

In the following thesis, we use some notations from logic. While they are mostly standard in
the community, we still define them here for the sake of clarity and self-containment. We also
define particular sets that are used to lighten the notations in this document. In the following
document, we assume some basic understanding of propositional and first-order logic. We also
assume the reader has some knowledge of programming, data structures and graph theory.

Ordered sets. Some sets used in this work are specified to be ordered when they are defined
(see τ , ω... in Sect. 2.3). An ordered set S is a finite set that supports standard operations,
but also the Pop(S) (resp. Top(S)) and Dequeue(S) (resp. First(S)) operations that
respectively remove (resp. read) the last and first element added to the set. In an ordered
set S = {s1, s2}, we assume that s1 is before s2. These sets are constructed using ∪ as
the concatenation symbol. For example, {s1, s2} ∪ {s3, s4} = {s1, s2, s3, s4} and {s3, s4} ∪
{s1, s2} = {s3, s4, s1, s2}. The set subtraction symbol removes elements of the set, but keeps
the relative order of the remaining elements. For example, {s1, s2, s3, s4}\{s2, s3} = {s1, s4}.

Conjunctive and disjunctive sets. A conjunctive (resp. disjunctive) set is a mathemat-
ical object used to represent formulas. In this document, we refer to a conjunctive (resp.
disjunctive) set of formulas to represent a formula that is a logical conjunction (resp. dis-
junction) of the formulas in the set. For example, the conjunctive set {a, b} represents the
formula a ∧ b. The disjunctive set {a, b} represents the formula a ∨ b. This notation is used
to simplify the operations on formulas. The union of conjunctive (resp. disjunctive) sets
is another conjunctive (resp. disjunctive) set. Conjunctive and disjunctive sets cannot be
combined with set operations. However, they can be combined with the logical operators ∧
and ∨. For example, let Sd = {a, b} be a disjunctive set and Sc = {c, d} be a conjunctive set,
then Sd ∧ Sc gives a disjunctive set of conjunctive sets {{a, c, d}, {b, c, d}} or conjunctive set
of disjunctive sets {{a, b}, {c}, {d}} equivalent to the formula (a∨ b)∧ c∧ d. The semantic of
formulas is described in the following paragraphs.

5

2023 Robin Coutelier Chapter 1. Background Knowledge

Propositional logic. In the context of propositional logic, we use the standard proposi-
tional vocabulary. In particular, we define a variable v as a Boolean variable, i.e., a variable
that can take the value true (⊤) or false (⊥). For SAT solving, a variable can also be
undefined, meaning that it has not been assigned a value yet. A partial assignment π is a
set of variables that have been assigned a value. We consider (partial) assignments as con-
junctive sets of literals. A literal is a variable v or its negation ¬v. A literal ℓ can be satisfied,
falsified or undefined in an assignment π. A literal ℓ is satisfied by π iff ℓ ∈ π. Conversely, ℓ
is falsified by π iff ¬ℓ ∈ π. Finally, ℓ is undefined in π iff it is neither satisfied nor falsified.
Assigning a literal ℓ to true means that ℓ ∈ π, if ℓ = ¬v, then assigning ℓ to true is equivalent
to assigning v to false.

A clause is a disjunction of literals (e.g., ℓ1 ∨ · · · ∨ ℓn). It is written with a potentially
subscripted or primed capital letter (usually but not limited to C). A clause is treated as
a disjunctive set of literals. A clause C is satisfied by an assignment π if at least one of its
literals is satisfied by π. A clause C is falsified if all its literals are falsified by π. A clause
C is made unit by an assignment π if it is not satisfied by π and C has only one undefined
literal. A clause C is made unisat by an assignment π if only one literal is satisfied by π and
all the other literals are falsified.

A propositional formula is a logical expression that combines literals and logical connectives.
More formally,

• a variable is a propositional formula;

• if ϕ is a propositional formula, then ¬ϕ is also a propositional formula;

• if ϕ and ψ are propositional formulas, then (ϕ ∧ ψ) and (ϕ ∨ ψ) are also propositional
formulas.

An interpretation I of a formula ϕ is a total mapping of all variables of ϕ to truth values. It
is a set of mappings of the sort v ← ⊤ or v ← ⊥ where v is a variable of ϕ. A model of a
formula ϕ is an interpretation I such that I |= ϕ. That is, I makes ϕ true. The symbol |=
reads models and is used to denote the entailment relation. ϕ |= ψ means that all models of ϕ
are also models of ψ. I |= ϕ means that I is a model of ϕ. Two formulas ϕ and ψ are logically
equivalent if they have exactly the same models. That is ϕ |= ψ and ψ |= ϕ. The truthfulness
of a formula ϕ is defined by the semantic of the logical connectives detailed below.

A variable v is made true by an interpretation I if v ← ⊤ ∈ I. Conversely, v is made false
by I if v ← ⊥ ∈ I. The logical negation of a formula ϕ is written ¬ϕ. An interpretation I
makes the negation of a formula ϕ true (resp. false) iff it makes ϕ false (resp. true). We
can easily see that ¬¬ϕ is logically equivalent to ϕ. The logical disjunction of two formulas
ϕ and ψ is written (ϕ ∨ ψ). An interpretation makes the disjunction of two formulas ϕ and
ψ true iff the interpretation makes at least one of ϕ and ψ true. The logical conjunction
of two formulas ϕ and ψ is written (ϕ ∧ ψ). An interpretation makes the conjunction of two
formulas ϕ and ψ true iff it makes both ϕ and ψ true.

An assignment π can also be used as an interpretation of the formula ϕ if the set of variables
of π is identical to the set of variables in ϕ and π ∧ ϕ ⊭ ⊥. An interpretation can be built
from a full assignment π by assigning all the variables v of π to true if v ∈ π and to false if
¬v ∈ π. More formally, I = {v ← ⊤ | v ∈ π}∪ {v ← ⊥ | ¬v ∈ π}. In the following, when it is

6

2023 Robin Coutelier Chapter 1. Background Knowledge

stated that an assignment is a model of a formula, it is implied that the interpretation built
from the assignment is a model of the formula.

Remark 1.1.1. The formula definition given above is not minimal. Every formula can be
generated with the negation and disjunction operators only. The conjunction operator is
syntactic sugar to simplify the writing of formulas. Indeed, ϕ ∧ ψ is logically equivalent to
¬(¬ϕ ∨ ¬ψ).
We say that a formula ϕ is satisfiable if it has at least one model. That is, there exists an
interpretation I such that I |= ϕ. Conversely, we say that a formula ϕ is unsatisfiable if
it has no model. It is also written ϕ |= ⊥. All models of ϕ are also models of ⊥, but ⊥
does not have any model, therefore ϕ is unsatisfiable. A formula is valid if it is true for all
interpretations (⊤ |= ϕ). The duality property states that a formula ϕ is valid if and only
if ¬ϕ is unsatisfiable. Two formulas are equisatisfiable if both are satisfiable, or both are
unsatisfiable.

First-order logic. In the second part of this thesis, we need a more expressive logic to
discuss SMT. In particular, we will focus on First-Order Logic (FOL). We use the notations
from [1] and refer to an infinite set of sorts S, and an infinite set of sorted variables X.
A formula Φ is a first-order formula with a signature Σ composed of a set of sort symbols
ΣS ⊆ S, a set of predicate symbols ΣP , a set of function symbols ΣF and a total mapping
from ΣP to

(
ΣS

)∗
and from ΣF to

(
ΣS

)∗×ΣS . The symbol ∗ is interpreted as a Kleene star,
i.e., the set of all finite sequences of elements of ΣS . These mappings correspond to the arity
of predicate and function symbols. A function f with arity n has a mapping σ1 . . . σn 7→ σ
(where σ1, . . . , σn, σ ∈ ΣS), that is, a function that takes n arguments of sorts σ1, . . . , σn and
returns a value of sort σ. A function symbol with arity 0 is a constant symbol. Predicates
behave similarly but do not have a return sort. A predicate P with arity n has a mapping
σ1 . . . σn and selects a subset of the domain of σ1 × · · · × σn. A predicate symbol with arity
0 is a propositional variable. In general, we use the symbols P,Q for predicates and f, g for
functions. Constants (nullary functions) are differentiated from non-nullary functions by the
use of the symbols a, b, c.

We also distinguish between interpreted and uninterpreted predicates and functions. An
interpreted predicate (resp. function) is a predicate (resp. function) that has a meaning in a
theory T . For example, the equality predicate = is interpreted and takes the subset of pairs
(e, e′) ∈ σ×σ for which the e and e′ are equal. The function + is interpreted in the theory of
arithmetic. An uninterpreted predicate (resp. function) is a predicate (resp. function) that
is free of any theory. For example, the predicate P and function f are uninterpreted.

A term is a variable or a function symbol applied to a sequence of terms (of the correct sort
and the correct number of terms). For example, f(a), x, g(f(c), x) are terms. An atom is
a predicate symbol applied to a sequence of terms. A literal is an atom or its negation. A
formula is a literal, a disjunction or conjunction of formulas, the negation of a formula, or a
quantified formula. If Φ and Ψ are FOL formulas, then ¬Φ,Φ ∨Ψ,Φ ∧Ψ, ∀xΦ and ∃xΦ are
all formulas.

A first-order interpretation I is a total mapping from (1) the set of sorts σ ∈ ΣS to non-
empty sets I(σ) ⊆ D(σ) (where D(σ) is the domain of σ), (2) the set of variables x ∈ ΣX to
elements of their sort σ, I(x) ∈ I(σ), (3) the set of symbols f ∈ ΣF to a set of total functions

7

2023 Robin Coutelier Chapter 1. Background Knowledge

I(f) : σ1 × · · · × σn 7→ σ and (4) from the set of symbols p ∈ ΣP to subsets of the domain
of p, I(p) ⊆ σ1 × · · · × σn. Interpreted predicates and functions have predefined mappings
and are fixed in the interpretation (e.g., the equality predicate cannot be interpreted as a
different set as the one provisioned by the theory of equality). An interpretation I is a model
of a formula Φ if I |= Φ. That is, I makes Φ true. The rules of logical connectives are
identical to propositional logic. An interpretation I makes an atom P (t1, . . . , tn) true if
(I(t1), . . . , I(tn)) ∈ I(P). A term f(t1, . . . , tn) is interpreted depth first as the return value
of the function f with arguments t1, . . . , tn. The existential quantifier ∃ is interpreted as:
I |= ∃(x ∈ σ). Φ iff I |= x = x′ ∧ Φ for some fixed x′ ∈ σ.
Remark 1.1.2. Similar to the duality of conjunctions and disjunctions, the universal quantifier
can be expressed with an existential quantifier. Indeed, ∀xΦ is equivalent to ¬∃x¬Φ.

Syntactic Sugar. To make formulas more readable, we will ignore some parenthesis inside
formulas. In the definition above, a conjunction of three variables a, b, c is built as (a∧(b∧c)).
Since conjunction and disjunction are associative, this is of course equivalent to ((a ∧ b) ∧ c).
Furthermore, the outside parenthesis are meaningless and also removed. We will write a∧b∧c
instead. The same applies to disjunctions. Furthermore, when considering quantifiers, we will
use the dot symbol . to indicate the start of a parenthesis that ends at the end of the current
block. For example, ∀x ∈ X. ϕ(x) should be interpreted as ∀x(x ∈ X ⇒ ϕ(x)). If the
quantifier is restricted to a local block, then the dot symbol is also restricted to that block.
For example ∀x ∈ X. ϕ(x) ∧ ∃y ∈ Y. ψ(x, y) is interpreted as ∀x (x ∈ X ⇒ (ϕ(x) ∧ ∃y (y ∈
Y ∧ ψ(x, y)))).

1.2 Propositional Resolution Rule

The resolution rule is a well-known inference rule in logic. It is defined by [15] as a function
that takes two clauses C1 and C2 and one literal ℓ as argument, and, if ℓ ∈ C1 and ¬ℓ ∈ C2,
returns a new clause that is a logical consequence of C1 and C2. This new clause is C ′ =
C1 \{ℓ}∪C2 \{¬ℓ}. The resolution rule is complete for propositional logic [13], meaning that
if a formula ϕ is unsatisfiable, then there exists a resolution refutation of ϕ. That is, there
is set of resolution steps from ϕ that lead to the empty clause (provided that ϕ is in CNF,
defined in Sect. 2.1). And if a formula ϕ is satisfiable, then a saturated set of clauses can be
found in bounded time. The saturated set is a set of clauses that cannot be uniquely resolved
further, and that does not contain the empty clause.

C1 = ℓ ∨D1 C2 = ¬ℓ ∨D2
(ℓ)

C ′ = D1 ∨D2

The resolution rule is sound. Indeed, two possible assignments of ℓ exist in any interpretation.
Either ℓ is assigned false, then D1 must be satisfied to satisfy C1. Or ℓ is assigned true,
then D2 must be satisfied to satisfy C2. In both cases, D1 ∨D2 must be satisfied to satisfy
C1 ∧ C2. Therefore, C1 ∧ C2 |= C ′.

The resolution rule will become relevant in Sect. 2.3.3 for conflict analysis.

8

Chapter 2

SAT Solving

2.1 Boolean Satisfiability Problem

Boolean Satisfiability (SAT) is an NP-complete problem that consists in finding a satisfying
assignment of Boolean (also called propositional) variables given a Boolean formula. It is
often used in practice, because it is a generalization of many other problems. For several
applications, using state-of-the-art SAT solvers on an appropriate encoding appeared more
effective than using traditional specialized algorithms. Indeed, a lot of clever techniques
have been developed to solve SAT instances, bringing a lot of engineering effort that cannot
always be matched by specialized algorithms. For example, [26, 6] shows that SAT solvers can
efficiently solve the subsumption and subsumption resolution problem in first-order saturation
algorithms. SMT solvers use SAT solving as a backbone to solve more complex and expressive
problems [1, 4, 8].

Example 2.1.1. The formula (a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ c) is satisfiable with the
assignment {¬a, b, c} since every clause is satisfied by either ¬a or b. SAT solvers are able
to find such an assignment, not only on toy examples, but on propositional formulas with
thousands of variables and clauses.

Conjunctive Normal Form. For practical reasons, it is often desirable to have formulas
in a standard form. For SAT solvers, this preferred form is the Conjunctive Normal Form
(CNF). A formula is in CNF if it is a conjunction of clauses, where a clause is a disjunction
of literals. A literal is a variable or its negation. (The Ex. 2.1.1 is already in CNF.)

Theorem 2.1.1 (Tseitin [29]). Any Boolean formula can be converted into an equisatisfiable
formula in CNF in quasi linear time.

The conversion uses the equivalences in Table 2.1 to push the negations inwards and distribute
the disjunctions over the conjunctions. The two first equivalences are the definition of the
logical implication and equivalence. The third is simply the double negation simplification.
The next two are De Morgan’s laws. The last two equivalences are distributivity laws.

However, these rules are not sufficient to transform every formula into CNF. For arbitrary
subformulas ϕi, a formula of the type ϕ1 ∨ · · · ∨ ϕn cannot be transformed into CNF with
the equivalences of Table 2.1. Therefore, we use the Tseitin transformation. New variables

9

2023 Robin Coutelier Chapter 2. SAT Solving

Formula Towards CNF

ϕ⇒ ψ ¬ϕ ∨ ψ
ϕ⇔ ψ (ϕ ∨ ¬ψ) ∧ (¬ϕ ∨ ψ)
¬(ϕ ∧ ψ) ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ¬ϕ ∧ ¬ψ
¬¬ϕ ϕ

ℓ ∨ (ϕ ∧ ψ) (ℓ ∨ ϕ) ∧ (ℓ ∨ ψ)
ℓ ∧ (ϕ ∨ ψ) (ℓ ∧ ϕ) ∨ (ℓ ∧ ψ)

Table 2.1: Logical equivalences to push negations inwards. The formulas ϕ and ψ are arbitrary
formulas, and ℓ is a literal.

t1, . . . , tn are introduced for each subformula ϕi. The subformula ϕi is replaced by the variable
ti and the clause ti ⇔ ϕi is added to the formula. On the above example, this method gives
the equisatisfiable formula:

(t1 ∨ . . . ∨ tn) ∧ (t1 ⇔ ϕ1) ∧ . . . ∧ (tn ⇔ ϕn)

The components (ti ⇔ ϕi) can themselves be transformed into CNF using the Table 2.1
second equivalence. This yields the formula (ti ∨¬ϕi)∧ (¬ti ∨ ϕi). The procedure repeats on
the subformulas ϕi and ¬ϕi until the whole formula is in CNF.

In the rest of this thesis, we assume without loss of generality that the formulas are in CNF.

Remark 2.1.1. The full equivalence ti ⇔ ϕi is not always necessary and can sometimes be a
simple implication (in one direction or the other). This is called the polarity optimization
[25] and is used in modern Tseitin transformation algorithms. However, this optimization is
not necessary for the rest of this thesis and will not be discussed further.

10

2023 Robin Coutelier Chapter 2. SAT Solving

2.2 DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [7] is a procedure that decides the
satisfiability of a formula in CNF by recursively searching for a satisfying assignment. The
algorithm is composed of two main parts: the Boolean constraint propagation (BCP) and the
search.

A partial assignment is kept during the search. It is a conjunctive set (as defined in Sect. 1.1)
π of literals that are assumed to be true. The partial assignment is assumed to be consistent,
i.e., it does not contain both a variable and its negation. Let V be the set of variables in
a propositional formula φ. If every variable in V is assigned to true or false and π |= φ,
then π is a model of φ and a solution was found. The partial assignment can be understood as
a formula that consists of clauses with a unique literal. Recall that the formula φ is assumed
to be in CNF; therefore φ can be seen as a conjunctive set of clauses. It is also assumed that
trivial clauses are removed from φ, i.e., φ contains no clause with a variable and its negation.
Clauses also do not contain twice the same literal. These properties of φ are assumed to hold
for the rest of this document.

2.2.1 Boolean Constraint Propagation

The BCP algorithm is a procedure that propagates the consequences of the current assign-
ment π. BCP searches for unit clauses under assumption π, i.e., clauses with no satisfied
literal and exactly one unassigned literal. If such a clause is found, BCP first checks that
assigning the literal to true does not falsify any clause in φ. If it does, then a conflict is found
and BCP returns ⊥. Otherwise, the literal is assigned to true. This process is repeated until
no more unit clauses are found. Literals that are assigned by BCP are called implied literals.
If no conflict is detected, the procedure returns the partial assignment π.

Example 2.2.1. Consider the formula φ = {C1, C2, C3, C4} with
C1 = ¬b ∨ c ∨ d C2 = ¬a ∨ b ∨ ¬c
C3 = ¬b ∨ c C4 = ¬b ∨ ¬c

and the partial assignment π = {¬b, c}. The clause C2 is unit, and only ¬a satisfies it.
π ∪ {¬a} = {¬b, c,¬a} does not falsify any clause; therefore, ¬a can be added to π.

2.2.2 Search

First, BCP is performed on the formula. If a conflict is detected, then the search returns ⊥
and backtracks. If all variables are assigned, then the search returns the model. Otherwise,
it chooses one free variable and assigns it arbitrarily to true or false. This variable is called
a decision. The search then continues recursively. If the first recursive call returns ⊥, then
the chosen variable is now assigned to false and the search is tried again. If the other call
also returns ⊥, then the search backtracks by returning ⊥. When one of the calls returns a
model, the search returns the model. Intuitively, Search(φ, π) returns a model of φ under
assumption π if it exists, and ⊥ if φ ∧ π |= ⊥. Starting with π = ∅ answers whether φ is
satisfiable.

An overview of the algorithm is given in Alg. 1. It is, of course, possible to improve it by
removing the recursive calls and implementing the search with a stack of literals. Alg. 1

11

2023 Robin Coutelier Chapter 2. SAT Solving

Algorithm 1 DPLL search algorithm overview

procedure BCP(φ, π)
for unit clause C in φ by π do

ℓ← C \ π ▷ The unassigned literal
if ∃C ′ ∈ φ. C ′ ∧ (π ∪ {ℓ}) |= ⊥ then ▷ Conflict detected if ℓ is added to π

return ⊥
π ← π ∪ {ℓ}

return π
procedure Search(φ, π)

π ← BCP(φ, π)
if π = ⊥ then

return ⊥
if ∀v ∈ V. v ∈ π ∨ ¬v ∈ π then ▷ All variables are assigned

return π
v ← Decide(φ, π) ▷ Choose a free variable
π′ ← Search(φ, π ∪ {v})
if π′ ̸= ⊥ then

return π′

return Search(φ, π ∪ {¬v})
procedure DPLL(φ)

return Search(φ, ∅)

provides only a high-level overview of DPLL. Decisions are remembered implicitly in the
recursive calls. Using a stack, the decision would be discriminated from implied literals such
that backtracking can stop at the right point. A more sophisticated algorithm for BCP is
also discussed in Sect. 2.3.

Example 2.2.2. Consider the same formula as in Ex. 2.2.1.

C1 = ¬b ∨ c ∨ d C2 = ¬a ∨ b ∨ ¬c
C3 = ¬b ∨ c C4 = ¬b ∨ ¬c

One can see the search as a tree exploration. Nodes are partial assignments, and edges are
new literal assignments. Fig. 2.2.1 displays a search tree that DPLL could follow. For the sake
of readability, only the newly added literal is displayed in the node. The partial assignment
is the conjunction of all the literals on the path from the root to the node. Decisions with the
positive polarity are displayed on the left branches and the right branches are the negated
choices. Vertical branches are propagations through BCP. Dots are branches that were not
explored because the search terminated. DPLL progressively builds a model in a depth-first
manner until a conflict is found, in which case it goes back to the last decision and resumes the
search with the other polarity of the decision. Choosing b leads to a conflict between C3 and
C4. The search backtracks and changes the polarity of the decision to ¬b. No unit clause is
detected and c is decided. BCP safely propagates ¬a and d is decided. The search terminates
because every variable has been assigned. The assignment is a model and is returned.

12

2023 Robin Coutelier Chapter 2. SAT Solving

∅

b

c ∧ ¬c

⊥

¬b

c

¬a

d

{¬b, c,¬a, d}

.

.

Figure 2.2.1: Tree exploration of the DPLL algorithm on Ex. 2.2.1

2.2.3 Soundness, Completeness and Complexity

DPLL is an effective procedure to solve the SAT problem. It is sound and complete. That
is, answers provided by DPLL are always correct, and it will terminate in a finite time. If
DPLL returns a model, then the search found a complete assignment that does not falsify
any clause. Since all variables are assigned, it must be that every clause is satisfied, and the
answer from DPLL is indeed a model. Otherwise, DPLL has systematically searched every
partial assignment and concluded that each of them falsifies at least one clause. Therefore,
the formula is unsatisfiable, and the procedure is sound. The procedure also terminates since
there is a finite number of assignments to explore. The search never explores twice the same
partial assignment since during every call of Search, at least one decision changes polarity,
and literals cannot be assigned multiple times in the same partial assignment.

2.2.4 Discussion of the DPLL Algorithm

While the DPLL algorithm is sound and complete, it is sometimes not efficient. Indeed, if a
subset of variables of V is involved in a conflict, the algorithm might explore the same conflict
structure several times.

Example 2.2.3. Let φ be the conjunctive set of the clauses C1, . . . , C6:

C1 = a ∨ b C2 = ¬b ∨ c C3 = ¬a ∨ ¬c
C4 = ¬a ∨ b ∨ c C5 = a ∨ ¬b ∨ ¬c C6 = d ∨ e

From the Fig. 2.2.2, it is obvious that the conflict on variables a, b, c is explored multiple
times. Indeed, if the order of variable decisions is not good, then the algorithm is highly
inefficient. Some heuristics exist to choose the next variable to assign. It is, however, beyond
the topic of this thesis to discuss them here. See [17, 18] for more information about decision
heuristics.

13

2023 Robin Coutelier Chapter 2. SAT Solving

∅

d

e

a

¬c

b ∧ ¬b

⊥

¬a

b

c ∧ ¬c

⊥

¬e

a

¬c

b ∧ ¬b

⊥

¬a

b

c ∧ ¬c

⊥

¬d

e

a

¬c

b ∧ ¬b

⊥

¬a

b

c ∧ ¬c

⊥

¬e

a

¬c

b ∧ ¬b

⊥

¬a

b

c ∧ ¬c

⊥

Figure 2.2.2: Tree exploration of the DPLL algorithm on Ex. 2.2.3. The same conflicting
structure is repeated multiple times.

2.3 CDCL Algorithm

Motivated by the weakness of the DPLL algorithm to learn conflict patterns, Conflict Driven
Clause Learning (CDCL) was introduced. The CDCL algorithm seeks to learn clauses to
prune the search space and prevent conflicts from re-emerging. It is the basis of most modern
SAT solvers. As described in [11], a CDCL solver is composed of four main parts: Boolean con-
straint propagation (BCP), conflict analysis and learning, backtracking, and decision heuris-
tics.

In CDCL the order of assignment of literals is important: the order is no longer implicitly
recorded in recursive calls, as it was in DPLL. The partial assignment is usually split into
two disjoint conjunctive ordered sets (defined in Sect. 1.1) (1) the trail τ containing fully
propagated literals (2) the propagation queue ω containing literals waiting to be propagated.
A propagated literal has already been checked for implications and conflicts by BCP. Each
literal in ω is implied by some clause in φ and τ . That is, φ ∧ τ |= ω. By abuse of notation,
and to make algorithms more readable, decisions are also pushed on ω, but they are not
consequences of φ ∧ τ . To be more precise, φ ∧ τ |= ω when ω does not contain any decision.
The trail and the propagation queue compose the partial assignment π = τ ∪ ω.

To ensure that the τ is usable, and that BCP did not miss any conflict, we enforce Inv. trail
sanity .

Invariant 2.3.1 (Trail sanity). The trail τ does not falsify a clause in φ.

Stating that ℓ ∈ τ means that the literal ℓ is assigned to true and is satisfied by τ . Similarly,
¬ℓ ∈ τ means that the literal ℓ is falsified. Unassigned literals are neither satisfied nor falsified.
The notation τ |= φ means that the formula φ is satisfied by the trail τ .

14

2023 Robin Coutelier Chapter 2. SAT Solving

Remark 2.3.1. In practice, both the trail τ and the propagation queue ω often share the same
memory space. Since the propagation process dequeues the literals from ω and pushes them
on τ , only a single stack is needed, with a pointer indicating where τ ends and ω begins. This
detail becomes relevant in Sect. 4.2.4.

The trail is divided in decision levels. The decision level of a literal ℓ is written δ(ℓ) and is
the number of decisions that were made before ℓ can be assigned. The decision level of a
trail τ (resp. clause C) is written δ(τ) (resp. δ(C)) and is the maximum decision level of
the literals in τ (resp. C). The set of decisions in the trail is written τd. A decision level
of 0 indicates that the literal is a direct consequence of the formula φ. Unassigned literals
have a decision level of ∞. We assume that the decision level of a literal is independent of
its polarity. δ(ℓ) = δ(¬ℓ) regardless of whether ℓ ∈ τ ∪ ω or ¬ℓ ∈ τ ∪ ω. Literals in the
assignment which are not decisions (τ ∪ω \ τd) are called implied literals. Literals in the trail
τ are propagated literals.

Remark 2.3.2. A more precise definition of the decision level of a literal δ(ℓ) will be necessary
in Chap. Chronological Backtracking. The more accurate definition of δ(ℓ) is given by the
implication graph of the trail which is introduced later. However, this detail is not necessary
as long as the solver uses non-chronological backtracking. In this chapter, we assume that
this is the case, and this simple definition is sufficient.

Example 2.3.1. Assume that during an execution of the CDCL algorithm, the decision ¬a is
made, then BCP implies and propagates b and c, finally, the solver decides ¬d. The trail is
τ = {¬a, b, c,¬d}. The decision level of ¬a, b and c is 1 and the decision level of ¬d is 2.

2.3.1 CDCL Algorithm Overview

Alg. 2 gives an overview of the CDCL algorithm. It is composed of four main components.

BCP. Boolean Constraint Propagation (BCP) is the same as in the DPLL algorithm. BCP
implies and propagates the direct consequences of the current assignment on the formula. It
searches for unit clauses, i.e., clauses with no satisfied literal and one unassigned literal, if
such a clause is found, the unassigned literal is assigned to true and pushed on ω. When a
literal is done being propagated, it is pushed on the trail τ and removed from ω. This process
is repeated until the propagation queue ω is empty. If a conflict is found, BCP now returns
the conflicting clause instead of ⊥, otherwise, it returns ⊤.

Conflict analysis (learning). When BCP finds a conflict (i.e., ∃C ∈ φ. C ∧ τ |= ⊥),
conflict analysis searches for the pattern of the conflict. It finds a clause with exactly one
literal at the highest decision level that prevents the conflict from happening again. This
clause is sometimes called the conflict clause, but in this paper it is called the learned clause
to avoid confusion with the clause that caused the conflict.

The solver backtracks to any decision level before the conflict. The learned clause is then
added to the clause set φ. If the solver backtracks between the highest and second-highest
level of the learned clause, the learned clause becomes unit, and BCP propagates the highest
literal of the learned clause. As shall be discussed later, the choice of backtracking level is
important. In non-chronological backtracking (NCB), which is the focus of this chapter, the

15

2023 Robin Coutelier Chapter 2. SAT Solving

backtracking level is always the second-highest decision level of the learned clause. In the next
chapters, we present another backtracking method and its impact of the overall algorithm.

Backtracking. Backtracking is the procedure that undoes the assignments that were made
after a determined level. It is done by popping literals from the trail τ until the desired level
is reached. It also clears the propagation queue ω.

Decision. The decision procedure consists in choosing a free variable to which a value is
assigned. This newly assigned variable is not a consequence of φ ∧ τ ; therefore the literals
assigned by the Decide() procedure are called decisions.

Algorithm 2 CDCL algorithm overview

1: τ ← ∅ ▷ The trail
2: φ← ∅ ▷ The set of clauses
3: ω ← ∅ ▷ The propagation queue
4: procedure CDCL(φ′)
5: φ← φ′ ▷ Initialize the set of clauses
6: while ⊤ do
7: C ← BCP() ▷ C is the conflicting clause
8: if C ̸= ⊤ then ▷ Conflict detected
9: if δ(C) = 0 then ▷ Conflict without any decision

10: return ⊥
11: C ′ ← Analyze(C)
12: ℓ← the highest literal in C ′

13: Backtrack(δ(C ′ \ {ℓ})) ▷ Backtrack to the second-highest decision
level in C ′

14: ω ← ω ∪ {ℓ}
15: φ← φ ∪ {C ′} ▷ C ′ is no longer conflicting after backtrack-

ing
16: continue
17: ℓ← Decide()
18: if ℓ = ⊥ then ▷ No more literals to propagate
19: return τ
20: ω ← ω ∪ {ℓ} ▷ The propagation queue should be empty

at this point

2.3.2 Boolean Constraint Propagation

The Boolean constraint propagation is the same as in the DPLL algorithm. However, only
a very high-level view was given in the previous chapter. Watched literals is a commonly
used method introduced in [20] to reduce the number of accesses to clauses when propagating
literals. The idea is to only keep track of two literals in each clause called the watched literals.
During the propagation of a literal ℓ, all clauses watched by the literal ¬ℓ are checked for unit
propagation and conflict. The list keeping track of all clauses watched by a literal is called
the watch list.

Without loss of generality, we assume that the watched literals are the first two literals in a

16

2023 Robin Coutelier Chapter 2. SAT Solving

clause. That is, for a clause C, c1 and c2 are its watched literals. Formally, a clause C is
watched by two literals c1 and c2 if C = c1 ∨ c2 ∨ . . . and complies to the following invariant:

Invariant 2.3.2 (Watched literals). Let a clause C ∈ φ watched by c1 and c2. If c1 or c2 is
falsified by τ , then the other literal is satisfied by τ ∪ ω.

Invariant 2.3.3 (Watch lists). Each clause C in φ such that |C| ≥ 2 is watched by two literals.
Their corresponding watch lists contain the clause.

Because of Inv. watched literals and Inv. watch lists, BCP only needs to check the watch
list of the negation of the propagated literal as described in Alg. 3. Essentially, when BCP
attempts to falsify one of the watched literals of C by propagating ℓ, one of three things can
happen. Without loss of generality, let c1 = ¬ℓ and c2 the other watched literal.

1. ¬c2 ∈ τ . The clause is conflicting with τ ∪{ℓ} and ℓ cannot be propagated. The conflict
analysis is triggered.

2. c2 ∈ τ . The clause is satisfied and is left untouched.

3. c2 is unassigned. BCP then searches for a new literal in C to replace c1 as watched
literal. If no satisfied or unassigned literal is found, the clause is unit and BCP adds c2
to ω to restore Inv. watched literals.

Properties of Alg. 3. The condition on line 9 of the algorithm is sufficient to state that
the clause is conflicting. Indeed, ¬c2 must have been propagated before ℓ. Therefore, if there
had been another literal ℓ′ in the clause C that was not assigned false, c2 would have been
replaced at step 16 when propagating ¬c2
This observation can lead to some improvement on the algorithm. Indeed, since we just
showed that no replacement literal was found during the propagation of ℓ′, then C must have
been detected as a unit clause at step 20. Therefore, ¬ℓ must have been implied and enqueued
in ω before ℓ was propagated to ensure that τ ∪ ω satisfy C. The conflict could have been
detected at that moment. In Alg. 3, it is possible to have both ℓ ∈ ω and ¬ℓ ∈ ω, which we
know will lead to a conflict later. We can enforce a new invariant that prevents that from
happening and saves time.

Invariant 2.3.4 (Assignment coherence). Let a literal ℓ. If ℓ ∈ τ ∪ ω, then ¬ℓ /∈ τ ∪ ω.

Modification of the algorithm. By now using the union of the trail and the propagation
queue τ∪ω, as shown in blue in Alg. 4, BCP is able to detect conflicts earlier. The only possible
cost of this modification is that if ¬c2 ∈ τ , BCP has to check that there is no replacement
literal for c1 in C before concluding that there is a conflict. This was not necessary in Alg. 3
because BCP was sure that if c2 was assigned false, then there was no replacement literal
in C. However, as we shall see later (cfr. Rem 2.3.3), this is not possible. Therefore, this
optimization is free.

Blockers. Another common optimization is the use of blockers. The idea is to keep track
of one satisfied literal if it is found while searching for a replacement in Alg. 4. This literal is
called the blocker. If a blocker is found, it is not necessary to change the watch list. This is

17

2023 Robin Coutelier Chapter 2. SAT Solving

Algorithm 3 BCP with watched literals

1: procedure BCP()
2: while ω ̸= ∅ do
3: ℓ← First(ω)
4: c1 ← ¬ℓ
5: for C in φ watched by c1 do
6: c2 ← the other watched literal of C
7: if c2 ∈ τ then
8: continue ▷ Clause is satisfied
9: if ¬c2 ∈ τ then

10: return C ▷ Clause is falsified by τ ∪ {ℓ}
11: r ← ⊥ ▷ r will be the new watched literal
12: for ℓ′ in C \ {c1, c2} do
13: if ¬ℓ′ /∈ τ then ▷ ℓ′ is either unassigned or assigned to true
14: r ← ℓ′ ▷ Found a new watched literal
15: break
16: if r ̸= ⊥ then
17: c1 stops watching C
18: r starts watching C
19: continue
20: ω ← ω ∪ {c2} ▷ Because c1 is falsified and Inv. watched lit-

erals, c2 is must be satisfied by τ ∪ ω
21: ω ← ω \ {ℓ}
22: τ ← τ ∪ {ℓ}
23: return ⊤

shown in green in Alg. 4. With blockers, Inv. watched literals can be relaxed to Inv. blocked
watched literals to preserve Inv. trail sanity .

Invariant 2.3.5 (Blocked watched literals). Let a clause C ∈ φ watched by c1 and c2. If c1 or
c2 is falsified by τ , then C is satisfied by τ ∪ ω.

If a conflict is now detected, then both watched literals are falsified by ω. Indeed, if one of
the watched literal had been falsified by τ , then the clause must be satisfied by τ ∪ω because
of Inv. blocked watched literals. In this new setting, Inv. assignment coherence is respected,
and it is not possible to have both ℓ and ¬ℓ in τ ∪ ω. Therefore, if both watched literals
are falsified, then ¬c1 ∈ ω and ¬c2 ∈ ω or there is a blocker. However, blockers are satisfied
contradicting the premise that the clause is conflicting. Therefore, ¬c1 ∈ ω and ¬c2 ∈ ω.

2.3.3 Conflict Analysis

Implication Graphs

In the context of SAT solving, an implication graph is a graph whose vertices are literals and
whose edges are implications between literals. The reason for the propagation of a literal ℓ is
the unit clause C that required the literal to be implied because C \ {ℓ} is falsified by τ ∪ ω.
There is an implication between a literal ℓ′ and ℓ if ¬ℓ′ ∈ C where C is the reason for

18

2023 Robin Coutelier Chapter 2. SAT Solving

Algorithm 4 BCP with watched literals - improved

1: procedure BCP()
2: while ω ̸= ∅ do
3: ℓ← First(ω)
4: c1 ← ¬ℓ
5: for C in φ watched by c1 do
6: if C has blocker satisfied by τ ∪ ω then
7: continue
8: c2 ← the other watched literal of C
9: if c2 ∈ τ ∪ ω then ▷ c2 is or will be assigned to true

10: continue ▷ Clause is satisfied
11: r ← ⊥
12: for ℓ′ in C \ {c1, c2} do
13: if ¬ℓ′ /∈ τ ∪ ω then
14: r ← ℓ′

15: break
16: if r ̸= ⊥ then
17: if r ∈ τ ∪ ω then
18: SetBlocker(C, r)
19: continue ▷ No need to change the watch lists

20: c1 stops watching C
21: r starts watching C
22: continue
23: if ¬c2 ∈ τ ∪ ω then ▷ Clause is conflicting with τ ∪ ω
24: return C
25: ω ← ω ∪ {c2} ▷ Clause is unit

26: ω ← ω \ {ℓ}
27: τ ← τ ∪ {ℓ}
28: return ⊤

propagating ℓ. In an implication graph, the reason for a propagation ℓ can be built from the
negation of parents of ℓ in the graph and ℓ. Fig. 2.3.1 shows such a graph. For example, the
literal ¬v8 was implied by ¬v7 and v6. The reason for ¬v8 is the clause C5 = v7 ∨ ¬v6 ∨ ¬v8.
Literals in vertices without parents are decisions. That is, vertices without inbound edges.
Implication graphs are a useful tool for understanding the behavior of SAT solvers.

SAT solvers build such graphs during the search. The graph is initialized as a pair of empty
sets G = (V,E) = (∅, ∅). When a literal ℓ is added to ω, the graph is updated as follows:

• V ← V ∪ {ℓ}

• If ℓ is added to ω because the clause ℓ ∨ ℓ′1 ∨ · · · ∨ ℓ′n is unit under assignment τ ∪ ω,
then ¬ℓ′1, . . . ,¬ℓ′n are already in V and E ← E ∪ {(¬ℓ′1, ℓ), . . . , (¬ℓ′n, ℓ)}.

When backtracking to level δ, the implication graph removes all vertices reachable from
the decisions above level δ and the edges connected to them. For example, in Fig. 2.3.1,
backtracking to level 2 would remove all the green, orange and red vertices and the edges

19

2023 Robin Coutelier Chapter 2. SAT Solving

C1 = v1 ∨ v2
C2 = ¬v2 ∨ ¬v3
C3 = ¬v2 ∨ ¬v4 ∨ ¬v5
C4 = v3 ∨ v5 ∨ v6
C5 = v7 ∨ ¬v4 ∨ ¬v8
C6 = ¬v4 ∨ v8 ∨ v9
C7 = v10 ∨ ¬v9 ∨ v11
C8 = ¬v11 ∨ v8 ∨ ¬v12
C9 = v12 ∨ ¬v13
C10 = v7 ∨ v12 ∨ v14
C11 = ¬v6 ∨ v12 ∨ v15
C12 = v13 ∨ ¬v14 ∨ ¬v16
C13 = ¬v15 ∨ ¬v14 ∨ v16

¬v1

v2

¬v3

v4

¬v5

v6

¬v7

¬v8

v9

¬v10

v11

¬v12

¬v13

v14

v15

¬v16

v16

Figure 2.3.1: Example of an implication graph leading to a conflict (adapted from [13]). Literal
levels are color-coded from blue (level 1) to orange (level 4). Red literals are conflicting.

connected to them.

In practice, the SAT solver only needs to remember the reason for the propagation of each
literal. If no such reason exists, then the literal is a decision and does not have parents. The
order in which literals are added to the implication graph is identical to the order of literals
in the trail. By construction, it is easy to see that (1) the implication graph is acyclic and
(2) the trail follows a topological order of the implication graph. The second property is used
when performing conflict analysis.

Conflict Analysis Goals

During conflict analysis, the solver searches a clause C ′ (different from the conflicting clause
C) that is a logical consequence of the formula φ and is unsatisfiable under the current
assignment τ ∪ ω. More precisely, the clause C ′ must be falsified before the conflict C arose.
For example, if the last falsified literal of the C is located at position p in τ ∪ ω, then the
last literal of the new clause C ′ must be falsified before p. Otherwise, it will not prevent the
solver from going through the same conflict again. This new clause C ′ is called the learned
clause. C ′ is then added to the clause set φ once backtracking made it safe to do so (without
violating Invs. trail sanity and blocked watched literals).

The objective of this operation is to learn the most general clause possible that prevents the
solver from going through the same conflict again. The intuition is that the learned clause
prunes parts of the search space that would always lead to a conflict. If the learned clause
has a unique literal at the maximum decision level, then backtracking the conflict makes the
learned clause unit. Therefore, the search will be able to resume without needing a decision.
This is a property which we want to achieve.

Naive conflict analysis

The simplest conflict analysis is to take the negation of all the literals in the trail τ to generate
the learned clause. While this sounds reasonable, it is not a good solution because it is highly

20

2023 Robin Coutelier Chapter 2. SAT Solving

inefficient. It only prunes the current branch of the search tree and does not have a unique
literal at the maximum decision level.

A better solution can be found by observing that all literals that are not decisions are logical
consequences of the decisions. If we denote τd the trail restricted to the decisions, we have
φ ∧ τd |= τ ∪ ω. Therefore, the learned clause can be generated by taking the negation of all
the literals in τd.

While this approach works and generates valid clauses, it does not learn the structure of the
conflict. Indeed, the learned clause may contain a lot of literals that are irrelevant. This
would be mostly equivalent to DPLL. The solver would backtrack one level at a time, just
like DPLL, and would be forced to change the polarity of the last decision, just like DPLL. In
short, the CDCL solver would behave like an over-complicated DPLL solver that adds clauses
instead of simply changing the polarity of the last decision.

Example 2.3.2. Consider the formula φ comprising the clauses

C1 = a ∨ b C2 = a ∨ ¬b C3 = ¬a ∨ b
C4 = ¬a ∨ ¬b C5 = c ∨ d ∨ · · · ∨ z

If the solver decides to start assigning literals with τ = {c,d, . . . ,z,a, b}, the learned clause
would contain all the literals in τ except b. However, the conflict only involves a and b. A lot
of unnecessary literals are added to the learned clause.

First Unique Implication Point

When a conflict is detected, a clause C = ℓ1 ∨ · · · ∨ ℓn is falsified by τ ∪ ω. That is, in the
current assignment τ ∪ω, all the literals in C are assigned to false. We also know that there
are two types of literals in the trail: decisions, and implied literals. Implied literals are literals
that were assigned to true because there was no other way to satisfy a clause in φ. This is
the reason for the propagation.

For any ℓ in C such that ¬ℓ is implied (not decisions), we therefore know that there exists a
clause C ′ = ¬ℓ ∨ ℓ′2 ∨ · · · ∨ ℓ′n′ such that ¬ℓ ∈ τ ∪ ω and {¬ℓ′2, . . . ,¬ℓ′n′} ⊆ (τ ∪ ω). We can
use the resolution rule (see Sect. 1.2) between C and C ′ to generate a new clause.

C = ℓ ∨ ℓ2 ∨ · · · ∨ ℓn C ′ = ¬ℓ ∨ ℓ′2 ∨ · · · ∨ ℓ′n′

C ′′ = ℓ2 ∨ · · · ∨ ℓn ∨ ℓ′2 ∨ · · · ∨ ℓ′n′

The clause C ′′ is a logical consequence of φ and is unsatisfiable under the current assign-
ment τ ∪ω. Indeed, ℓ2∨· · ·∨ℓn is unsatisfiable since C is falsified. ℓ′2∨· · ·∨ℓ′n′ is unsatisfiable
since it is the falsified part of the reason of ¬ℓ, that is, ¬ℓ was the only satisfied literal in C ′.

It might be the case that some literals in C ′ are also in C. In this case, the resolution may
generate reasonably small clauses.

If this procedure is applied iteratively to remove literals at the highest decision level until only
one remains, the learned clause is called a Unique Implication Point (UIP) [10]. A UIP is a
clause that is a logical consequence of φ, is unsatisfiable under the current assignment τ ∪ ω,
and has a unique literal at the maximum decision level. The first UIP is the closest to the
conflict and is a good heuristic to find the most general clause possible.

21

2023 Robin Coutelier Chapter 2. SAT Solving

Remark 2.3.3. In NCB, the conflict clause always has at least two literals at the current
decision level. Indeed, if it had not been the case, the last literal would have been propagated
at a lower decision level. Furthermore, we discussed earlier that the two watched literals of
a conflict must be falsified by ω, and ω has all its literals at the highest level. This is not
necessarily the case in chronological backtracking as we shall see in the next chapter.

Remark 2.3.4. To obtain a UIP C ′, it is necessary that the last literal ℓ of the conflict C in the
assignment τ ∪ ω does not belong to C ′. Indeed, we know that there are at least two literals
in C at the highest level. By contradiction, if we tried and preserve ℓ ∈ C ′, we would need to
remove all the other literals at level δ(ℓ). This is not possible since replacing them by their
reason can only go as far as the decision at level δ(ℓ) that cannot be replaced. Therefore, we
would be stuck with ℓ and at least one other literal at decision level δ(ℓ). This would not
qualify as a UIP. Furthermore, when replacing any literal by its parent in the implication
graph, the replacement literals are always located before in the assignment (because τ ∪ ω is
a topological ordering with respect to the implication graph). Therefore, a UIP has all its
literals strictly before ℓ in the assignment and can be used as a learned clause.

Finding the first UIP can be done in linear time with Alg. 5. The algorithm starts from
the conflict clause C and iteratively replaces literals from the highest decision level with the
falsified literals from the reason of that literal. In the implication graph, this is equivalent to
replacing the current node with its direct predecessors. The algorithm stops when there is
only one literal at the maximum decision level (line 6). To obtain the most relevant clause,
the algorithm removes literals in the reverse order in which they were added to the trail. The
example on Fig. 2.3.1 was analyzed with Alg. 5 and the steps are shown in Fig. 2.3.2. The
negation of the literals belonging to the conflict clause in the current step are in blue. At first
(Fig. 2.3.2a), the learned clause is identical to the conflict clause. Then (Fig. 2.3.2b), the last
literal on the trail (¬v16) is replaced by the negation of its parents v13 and ¬v14. ¬v14 was
already in the clause and is not added again. The process continues with v15 (Fig. 2.3.2c)
until ¬v12 (Fig. 2.3.2e). There is only one literal at decision level δ(τ) left and the analysis
is complete. The learned clause is ¬v6 ∨ v7 ∨ v12. The procedure is equivalent to using the
resolution rule on literals in the reverse order of the trail:

¬v14 ∨ ¬v15 ∨ v16 v13 ∨ ¬v14 ∨ ¬v16
v13 ∨ ¬v14 ∨ ¬v15 ¬v6 ∨ v12 ∨ v15

¬v6 ∨ v12 ∨ v13 ∨ ¬v14 v7 ∨ v12 ∨ v13 ∨ v14
¬v6 ∨ v7 ∨ v12 ∨ v13 v12 ∨ ¬v13

¬v6 ∨ v7 ∨ v12

An important assumption of Alg. 5 as described in [10] is that the literals in τ ∪ω are ordered
in a topological order with respect to the implication graph. In NCB, this is self-evident
because the trail is built in a topological order as discussed earlier. However, as we shall
see in Sect. 4.2.3, this detail becomes important when switching to Strong Chronological
Backtracking (SCB). If this assumption is broken, then the exploration order of literals may
miss some literal at the highest level (see i in Alg. 5 line 8). Some literals in C ′ could be added
behind i and not be replaced. Several traversals of the highest level would be necessary, and
the returned clause might not be the first UIP.

22

2023 Robin Coutelier Chapter 2. SAT Solving

¬v1 v2 ¬v3

v4 ¬v5 v6

¬v7 ¬v8 v9

¬v10 v11 ¬v12 ¬v13 v14 v15 ¬v16

(a) i = 15, n = 3, L = {¬v14,¬v15, v16}

¬v1 v2 ¬v3

v4 ¬v5 v6

¬v7 ¬v8 v9

¬v10 v11 ¬v12 ¬v13 v14 v15 ¬v16

(b) i = 14, n = 3, L = {v13,¬v14,¬v15}
¬v1 v2 ¬v3

v4 ¬v5 v6

¬v7 ¬v8 v9

¬v10 v11 ¬v12 ¬v13 v14 v15 ¬v16

(c) i = 13, n = 3, L = {¬v6, v12, v13,¬v14}

¬v1 v2 ¬v3

v4 ¬v5 v6

¬v7 ¬v8 v9

¬v10 v11 ¬v12 ¬v13 v14 v15 ¬v16

(d) i = 12, n = 2, L = {¬v6, v7, v12, v13}

¬v1 v2 ¬v3

v4 ¬v5 v6

¬v7 ¬v8 v9

¬v10 v11 ¬v12 ¬v13 v14 v15 ¬v16

(e) i = 11, n = 1, L = {¬v6, v7, v12}

Figure 2.3.2: Execution of the conflict analysis on the implication graph of Fig. 2.3.1. The
literals were re organized to fit the trail order (left to right, top to bottom). The negation of
literals marked in blue belong to the current conflict clause.

23

2023 Robin Coutelier Chapter 2. SAT Solving

Algorithm 5 First UIP conflict analysis

1: procedure Analyze(C)
2: π ← τ ∪ ω ▷ π the array version of τ ∪ ω
3: C ′ ← C ▷ C ′ is the current learned clause
4: n← the number of literals in C at δ(τ)
5: i← |π| − 1 ▷ i is the index of the last literal in trail

6: while n > 1 do
7: while ¬π[i] /∈ C ′ do ▷ Find the last literal of C ′ in π
8: i← i− 1

9: C ′ ← C ′ \ {¬π[i]} ▷ Remove the literal π[i]
10: n← n− 1
11: C ′′ ← GetReason(π[i]) ▷ Get the clause that implied π[i]
12: for ℓ ∈ C ′′ \ {π[i]} do
13: if ℓ ∈ C ′ then
14: continue ▷ Avoid duplicates

15: C ′ ← C ′ ∪ {ℓ}
16: if δ(ℓ) = δ(τ) then
17: n← n+ 1

18: return C ′

2.3.4 Learning and Backtracking

Previously, the procedure for conflict analysis was established. Once the first UIP is found,
it must be added to the formula. However, it cannot be done directly without breaking
Inv. trail sanity . Therefore, the solver first backtracks to a decision level before the conflict.
The learned clause is no longer conflicting, but is still unit under τ (if backtracking only
unassigned the highest literal in the learned clause). So, following Inv. watched literals (or
Inv. blocked watched literals), the unassigned literal is added to the propagation queue ω.
Finally, the clause can safely be added to the formula and the solver can resume the search.
The learned clause prevents the solver from meeting the same conflict again.

When using watched literals, backtracking is almost free. The watched literals are only up-
dated when they are falsified by the trail. When backtracking, no such thing is done. Further-
more, conflicting and unit clauses see their watched literals unassigned during backtracking.
Indeed, conflicting clauses must have both watched literals at the highest decision level, and
unit clauses must have one watched literal in ω at the highest level too. When backtracking,
the watched literals are unassigned, meaning that the solver recovers sane watched literals.

The backtracking procedure shown on Alg. 6 is rather simple. It consists in popping the trail τ
until the desired level is reached. It also clears the propagation queue ω since any literal in ω
must be at level δ(τ). Backtracking preserves Inv. trail sanity . Indeed, backtracking does
not assign any new literals. Therefore, it cannot create any falsified clause. It also preserves
Inv. watched literals (or Inv. blocked watched literals). Watched literals are always updated
when they are falsified. Therefore, each update pushes the level of watched literals up. This
ensures that falsified watched literals are at the highest level in the clause, or that the clause
is satisfied at a level lower than the watched literals. Therefore, backtracking is guaranteed
to either backtrack the watched literals, or preserve the satisfied literal.

24

2023 Robin Coutelier Chapter 2. SAT Solving

Algorithm 6 Backtracking

1: procedure Backtrack(δ) ▷ δ < δ(τ)
2: ω ← ∅
3: while δ(τ) > δ do
4: Pop(τ)

Example 2.3.3. If during the conflict analysis, the clause a ∨ b ∨ c is found, and the literals
were assigned at level δ(¬a) = 5, δ(¬b) = 3 and δ(¬c) = 2, a solver using NCB backtracks to
level 3. The learned clause becomes unit, and a is implied at level 3.

2.3.5 Decision

Decide() is the procedure that searches an unassigned literal to propagate when no inference
can be used. It is usually done using some heuristic that keeps track of a score for each
literal. The literal with the highest score is propagated. [11] uses the “activity” of variables.
The activity of a variable is increased when it is involved in a conflict. Periodically, all
variables’ activity is decreased to avoid arithmetic overflow. Literals that were assigned with
the Decide() procedure are called decisions. Literals that were propagated by BCP after a
decision are at the same decision level as the decision (in NCB).

2.3.6 Purging Clauses

During the execution of the SAT solver, clauses with exactly one literal may be discovered
(either as input or as learned clauses). Some literals will be propagated at level 0. That is,
no decision is required to infer these literals. In that case, literals at level 0 can be considered
as “facts”. Once in a while, the solver performs some sort of garbage collection, also called
purge. All clauses satisfied at level 0 can be removed, and all literals falsified at level 0 can
be removed from clauses (since they can never be true).

2.3.7 Soundness and Complete

The CDCL algorithm is sound and complete. Soundness is guaranteed by the fact that the
trail τ can never falsify any clause. Indeed, before adding a literal ℓ to τ , BCP first checks that
adding τ does not falsify any clause. If it does, then ℓ is not added to τ and conflict analysis
is performed. Therefore, if a trail τ contains all the variables in φ and does not falsify any
clause in φ, then τ is a model and φ is satisfiable. If φ is unsatisfiable, it means that a clause
was falsified at level 0. Since the conflict analysis only generates clauses that are implied by
φ, the conflict can only be implied by φ without any decision and φ is unsatisfiable.

Termination is guaranteed by the fact that conflict analysis never generates a clause that
is already in φ. Indeed, the learned clause is conflicting with the partial assignment τ ∪ ω,
before any other clause in φ. Therefore, the learned clause is not in φ. There are finitely
many clauses that can be generated with a finite number of variables. If n is the number
of variables, then there are 3n possible clauses. Each variable can either, be in the clause
with positive polarity, with negative polarity or not be in the clause at all (3 choices for each
variable). If φ is unsatisfiable, then a conflict at level 0 must eventually occur (a ∧ ¬a would
be such a conflict). If φ is satisfiable, then the solver will eventually find a model. In the

25

2023 Robin Coutelier Chapter 2. SAT Solving

∅

d

e

a

¬c

b ∧ ¬b

⊥

.

.

.

∅

d

e

a

¬c

b ∧ ¬b

⊥

.

.

¬a

∅

d

e

a

¬c

b ∧ ¬b

⊥

.

.

¬a

b

c ∧ ¬c

⊥

Figure 2.3.3: CDCL with first UIP on Ex. 2.2.3

worst case, the solver generates all possible clauses that are implied by φ and then Decide()
and BCP() will find a model.

These proof sketches are not very rigorous. If the reader is interested, [3, 12] provide a verified
implementation of CDCL in Isabelle/HOL [24].

2.3.8 Advantage over DPLL

Let us apply CDCL on the motivating example Ex. 2.2.3 to display the strength of conflict
analysis. The formula is φ = {C1, C2, C3, C4, C5, C6} with

C1 = a ∨ b C2 = ¬b ∨ c C3 = ¬a ∨ ¬c
C4 = ¬a ∨ b ∨ c C5 = a ∨ ¬b ∨ ¬c C6 = d ∨ e

Let us use the same decision ordering as in Ex. 2.2.3. During the search, the first conflict
is discovered when propagating b with the trail τ = {d, e,a,¬c}. The conflict is caused by
clause C2 = ¬b ∨ c. However, we know that the reason for b was C4. The conflict analysis
procedure learns the clause C7 = ¬a.

¬b ∨ c ¬a ∨ b ∨ c
¬a ∨ c ¬a ∨ ¬c

C7 = ¬a
The second-highest level of C7 is 0, and the solver backtracks to level 0, adds the C7 to φ
then propagates ¬a. Because of C1, b is implied. Then ¬c because of C5. We now have a
conflict with C2. However, no decision was made on the trail; therefore the conflict clause is
C8 = ⊥. The problem is UNSAT. Those steps are summarized in Fig. 2.3.3. CDCL explored
much fewer nodes than DPLL because it was able to identify that the conflict was local to
the variables a, b and c.

26

Chapter 3

Chronological Backtracking

Previously, we learned that the traditional CDCL algorithm backtracks to the second-highest
decision level of a learned clause. This is called non-chronological backtracking. In this chapter,
we learn about a new paradigm: chronological backtracking. This method was introduced by
[22] and formalized by [19]. We first cover the key ideas behind chronological backtracking
and present the required modifications to the CDCL algorithm as presented by the authors
of [22, 19]. In the next chapter, we present the details of implementation that were not
discussed in the literature (as far as the authors are aware). Some modifications were done
on the algorithms to better fit the needs of the implementation in veriT and to comply with
the previously used notations.

3.1 Motivation

Non-Chronological Backtracking (NCB) has been an undisputed technique for CDCL SAT
solvers for a long time. However, Nadel et al. [22] introduced the idea of removing the
minimum number of literals possible from the trail and stopping backtracking as soon as the
learned clause becomes unit. That is, backtrack to the highest level in the learned clause
minus one. They showed that it could be beneficial to undo the trail less aggressively. Their
implementation performed significantly better on some problems without huge drawbacks.
Chronological Backtracking (CB) performs particularly well on satisfiable instances, which
is an interesting property for this thesis since in SMT, most instances are satisfiable. When
using NCB, conflicts may undo a large portion of the stack that may need to be recomputed
later. This is expensive work.

Example 3.1.1. Consider the example from [22]: φ = φ1 ∧ (a ∨ ¬b) ∧ (a ∨ b), where φ1 is an
arbitrarily large satisfiable formula whose variables are disjoint from a and b. A traditional
NCB solver would first try to solve φ1 since the number of occurrences of variables is higher
than for a and b. When the solver is done with solving φ1, it would then make a decision. It
may decide ¬a, leading to a conflict. The solver learns the clause a, then backtracks to the
second-highest literal in the clause, that is, 0. All the work done to solve φ1 is lost (aside
from learned clauses) and has to be redone.

In the example above, a chronological backtracking solver would simply backtrack ¬a, prop-
agate a, then make a decision on b. In that particular example, it would save a lot of time.

27

2023 Robin Coutelier Chapter 3. Chronological Backtracking

This simple idea, however, requires some modifications to the core CDCL algorithm. This
change of backtracking paradigm impacts all the main components of CDCL.

3.2 Modifications on the CDCL Algorithm

Alg. 7 shows the modifications necessary to convert a SAT solver from NCB to CB as presented
by [19]. The main difference is that the solver no longer backtracks to the second-highest level
in the clause but to the highest level minus one. This means that literals can be implied and
propagated at a lower level than the highest level on the trail. An example is discussed in
Sect. 3.2.2. Another important difference is that it is now possible to have conflicts with only
one literal at the highest level. In this case, it is not necessary to trigger conflict analysis since
the conflict already satisfies the conditions of the first UIP (that is, only one literal falsified
at the highest level). In that case, the solver simply backtracks to the highest level minus one
and propagates the highest literal in the clause. This is shown in lines 9 to 14 in Alg. 7. An
example is also shown on Fig. 3.2.2 and discussed in Sect. 3.2.2.

Previously, the assignment level of literals was implicitly determined. In NCB, any new literal
is assigned at level δ(τ) if it is implied, and δ(τ) + 1 if it is a decision. In CB, the level must
be set according to the level of the reason for the literal as shown on lines 12 and 20 or Alg. 7.
The following algorithms explicitly set the decision levels when necessary. Unassigned literals
have a decision level of ∞.

In Rem. 2.3.2, we mentioned that the definition of decision levels held as long as we stayed in
the non-chronological backtracking setting. This is no longer the case, and the definition must
be updated. The decision level of a literal δ(ℓ) is the number of decisions before ℓ plus one if
ℓ is a decision, and the highest decision level of predecessors of ℓ in the implication graph. It
is computed by the maximum level of falsified literals in the reason for the implication of ℓ.
In NCB, this definition is equivalent to the one given in the previous chapter. Indeed, since
a decision is taken only when no implication can be made, no more literals can be implied
by the last decision until a new clause is added. When a learned clause is added, the solver
backtracks to the second-highest level of the clause and still implies the literal at the highest
level in τ . Therefore, both definitions are equivalent in NCB. From this point onward, we
consider the second definition to be the correct interpretation of the decision level.

3.2.1 Backtracking

The backtracking procedure is also modified. Since the trail may be out of order with respect
to the decision level, it is necessary to preserve the literals lower than the backtracking level.
This is done using an auxiliary queue β that contains the literals that are lower than the
backtracking level. Alg. 8 is the backtracking algorithm advocated by [22] adjusted to our
notations. However, it lacks some details that are discussed in the next chapter.

3.2.2 Broken Invariants

While it is expected and documented by [19] that the conversion to CB breaks some invariants,
it may be worth mentioning the main invariant that is broken by CB. In NCB, the trail is a
sequence of literals of monotonically increasing decision levels. In CB, that is no longer the
case. Right after a conflict, the learned clause may not involve some decision levels between

28

2023 Robin Coutelier Chapter 3. Chronological Backtracking

Algorithm 7 CDCL with chronological backtracking

1: τ ← ∅ ▷ The trail
2: ω ← ∅ ▷ The propagation queue
3: φ← ∅ ▷ The set of learned clauses
4: procedure CDCL(φ′)
5: φ← φ′ ▷ Initialize the set of clauses
6: while ⊤ do
7: C ← BCP()
8: if C ̸= ⊤ then ▷ Conflict detected
9: if C has only one literal at level δ(C) then

10: ℓ← the highest literal in C
11: Backtrack(δ(C)− 1)
12: δ(ℓ)← δ(C \ {ℓ})
13: ω ← ω ∪ {ℓ}
14: continue
15: if δ(C) = 0 then
16: return ⊥
17: C ′ ← Analyze(C)
18: Backtrack(δ(C ′)− 1)
19: ℓ← the highest literal in C ′

20: δ(ℓ)← δ(C ′ \ {ℓ})
21: ω ← ω ∪ {ℓ}
22: φ← φ ∪ {C ′}
23: continue
24: ℓ← Decide()
25: if ℓ = ⊥ then ▷ No more literals to propagate
26: return τ
27: δ(ℓ)← δ(τ) + 1
28: ω ← ω ∪ {ℓ}

Algorithm 8 Backtracking with chronological backtracking

1: procedure Backtrack(δ)
2: β ← ∅
3: ω ← ∅
4: while δ(τ) > δ do
5: ℓ← Pop(τ)
6: if δ(ℓ) < δ then
7: β ← {ℓ} ∪ β
8: else
9: δ(ℓ)←∞

10: τ ← τ ∪ β

29

2023 Robin Coutelier Chapter 3. Chronological Backtracking

the highest and second-highest levels. Therefore, the solver can propagate literals that are
lower than the current decision level. An example of this is shown in Fig. 3.2.1.

In CB, the trail no longer behaves like a stack. Indeed, literals can be removed from the
center of the trail. This needs to be taken into account when CDCL is embedded in an SMT
solver.

How to read trail diagrams. When using chronological backtracking, one needs to know
the level of every literal in the partial assignment. This is why, from this point onward, we
use diagrams such as shown in Fig. 3.2.1. The bold literals are decisions. Each step level
represents a decision level. The literals are positioned in the relative order in which they
were added to the trail (until further notice, see Sect. 4.2.4). Literals that were implied are
annotated with the reason for propagation below the bottom line. The reason for implication
is the unit clause that was used to infer the literal. For visual reasons, literals falsified by τ ∪ω
are shown in red. The two first literals of the clauses are the watched literals. Conflicts are
marked at the end of the trail by a ⊥ symbol and the reason for conflict is also annotated
below the bottom line.

The dotted line marks the current propagation progression. Literals on the left are in the
trail τ , and literals on the right are in the propagation queue ω. If no such line is present,
then the trail is entirely in τ . When segments of the trail are marked as dashed, it means
that the solver implied more literals that are irrelevant to the example at hand, and were cut
out for conciseness. No assumptions should be made about the levels of the literals that were
cut out.

In general, the diagrams are taken from real runs of the modified veriT-SAT solver over
the SATLIB [16] benchmarks from the Uniform Random-3-SAT1 category. The goal is to
obtain realistic examples that show real behaviors of the algorithms. Instances are labeled uf

for satisfiable instances, and uuf for unsatisfiable instances. Then, the number of variables
is appended to the label, and finally the problem number is placed after the hyphen. For
example, uf20-0003.cnf is the third satisfiable instance with 20 variables. However, some
examples were handcrafted to illustrate a simpler point. In that case, the clauses are provided
in the statement and the variables are named a, b, c, . . . as opposed to v1, v2, v3, . . . for the
SATLIB instances.

Chronological backtracking at work. In the example shown in Fig. 3.2.1, a conflict is
detected at level 5. The conflict clause is C = v9 ∨ ¬v5 ∨ v20. The highest level in the clause
is δ(v9) = δ(¬v5) = 5. The conflict analysis learns the clause D = ¬v5 ∨ v20 ∨ v1. The
highest literal in D is ¬v5 and δ(¬v5) = 5. The second-highest literal is v20 and δ(¬v20) = 2.
Therefore, the solver backtracks to level 4 and propagates ¬v5 at level 2. In NCB, the solver
would have backtracked to level 2, undoing more work.

Unique literal at highest level. As briefly mentioned in Sect. 3.2, since new literals can
be implied at a lower level than previous literals, it is possible that the conflict clause contains
only one literal at the highest level. Indeed, the clause may be unit under τ ∪ ω at a level δ
(one literal at level δ) with the unassigned literal ℓ. But before the clause is detected to be

1https://www.cs.ubc.ca/ hoos/SATLIB/benchm.html

30

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

2023 Robin Coutelier Chapter 3. Chronological Backtracking

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

d
ecision

δ = 4

¬v18

d
ecision

δ = 5

¬v17

v
5 ∨

v
1
7 ∨

v
1
9

v5

v
1
6 ∨

v
1
7 ∨

v
1

v16

v
3 ∨
¬
v
5 ∨

v
1
8

v3

v
4 ∨
¬
v
5 ∨
¬
v
1
6

v4
¬
v
9 ∨
¬
v
5 ∨

v
1
¬v9

¬
v
8 ∨
¬
v
5 ∨

v
1
9

¬v8

v
9 ∨
¬
v
5 ∨

v
2
0

⊥

ω →← τ

(a) A conflict is detected at level 5. The clause ¬v5 ∨ v20 ∨ v1 was learned.

d
ecisio

n

δ = 1

¬v1

d
ecisio

n

δ = 2

¬v20

d
ecisio

n

δ = 3

¬v19

d
ecisio

n

δ = 4

¬v18

¬
v
5 ∨

v
2
0 ∨

v
1

¬v5

ω →← τ

(b) The solver backtracks to level 4 = 5 − 1. The learned clause ¬v5 ∨ v20 ∨ v1 becomes unit at
level 2. Therefore, ¬v5 is implied at level 2.

Figure 3.2.1: An example of CB at work (from uf20-0001.cnf). ¬v5 is implied and propa-
gated at a lower level than ¬v18. The monotonicity of decision levels in the trail is broken.

31

2023 Robin Coutelier Chapter 3. Chronological Backtracking

unit, the solver enqueues ¬ℓ at a level δ′ < δ. The clause becomes a conflict, but has only
one literal at the highest level. Therefore, backtracking is enough to make the clause unit
and continue the propagation. An example is shown in Fig. 3.2.2. This special case is caused
because it is possible to propagate literals at arbitrary levels (lower than δ(τ)). Breaking the
monotonicity invariant already shows some interesting properties.

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

d
ecision

δ = 4

¬v18

d
ecision

δ = 5

¬v17

¬
v
1
1 ∨

v
1
8 ∨

v
2
0 ∨

...
¬v11
¬
v
1
6 ∨

v
1
1 ∨

v
1
9

¬v16

v
1
7 ∨

v
1
6 ∨

v
1
1

⊥

ω →← τ

Figure 3.2.2: An example of a conflict with only one literal at the highest level (from
uf20-0016.cnf). The clause v17 ∨ v16 ∨ v11 is conflicting at level 5, but only contains the
literal v17 at that level. It is therefore not necessary to trigger conflict analysis. The solver
backtracks to level 4 and propagates v17.

3.3 Missed Lower Implications

During propagation, it is now possible to generate a trail that satisfies a clause by only one
literal at a level higher than all the other literals in the clause. This is called a missed lower
implication [21]. The satisfying literal should have been implied at a lower level (since the
clause is unit at that level), but was not since the clause became unisat after it was satisfied.
An example of a missed lower implication is given in Fig. 3.3.1.

Missed lower implications are a missed opportunity to refine the exploration of the search
space. While soundness and completeness are not impaired by overlooking this issue, efficiency
is. Missed lower implications are literals that may be backtracked at a higher level than they
should. In which case, an implication will be missed. But since the clause is unit, it must
be watched by the satisfying literal. If it is backtracked and propagated with the opposite
polarity, BCP will notice the conflict. This is inefficient since backtracking literals that are
still valid is a waste of time. Also, ensuring that the literals are as deep as possible in the
trail is a good way to prune the largest number of branches in the search tree when learning.

32

2023 Robin Coutelier Chapter 3. Chronological Backtracking

A re-implication procedure modifies the levels and reasons of missed lower implications. Up-
dating those levels may, in turn, reveal more missed lower implications. The same way
propagation is performed until a fixed point is reached, re-implication is performed until no
more missed lower implications are found.

If missed lower implications are not resolved, Inv. blocked watched literals no longer holds.
Indeed, if a clause C is unisat by a literal ℓ at level δ and δ(C \ ℓ) < δ, then if the solver
backtracks to level δ−1, C will see one of its watched literals falsified but will not be satisfied.
This is a violation of Inv. blocked watched literals.

33

2023 Robin Coutelier Chapter 3. Chronological Backtracking

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

v
1
5 ∨

v
1
9 ∨

v
2
0

v15

d
ecision

δ = 4

¬v18

d
ecision

δ = 5

¬v17

d
ecision

δ = 6

¬v16

v
3 ∨

v
1
6 ∨
¬
v
1
5

v3

v
1
4 ∨

v
1
8 ∨

v
2
0 ∨

...

v14

(a) A missed lower implication is detected with the clause v3 ∨ ¬v14 ∨ v19

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

v
1
5 ∨

v
1
9 ∨

v
2
0

v15

d
ecision

δ = 4

¬v18

d
ecisio

n

δ = 5

¬v17

d
ecision

δ = 6

¬v16

v
3 ∨
¬
v
1
4 ∨

v
1
9

v3

v
1
4 ∨

v
1
8 ∨

v
2
0 ∨

...

v14

(b) The literal reason and level of v3 is revised to recover from the missed lower implication.

Figure 3.3.1: Missed lower implication example (from uf20-0010.cnf). While propagating
v14, the clause v3 ∨ ¬v14 ∨ v19 is examined. It is unisat and the highest falsified literal is at
level 4. However, the unique satisfied literal is at level 6. Therefore, this is a missed lower
implication and v3 should be implied at a lower level. The missed lower implication should
be resolved. Otherwise, backtracking to level 4 or 5 would create an undetected unit clause,
breaking Inv. blocked watched literals.

34

Chapter 4

Chronological Backtracking in veriT

In this work, we intend to convert the NCB SAT solver from veriT to CB. The first step
is to convert the standalone SAT solver veriT-SAT. In Chap. SMT solving, we consider the
impact of this change on the SMT solver. This process reveals insights on details that were
not covered in the literature on CB (as far as we are aware). In this chapter, we discuss the
attention points and complications one might encounter during this process. In particular,
we discuss the changes CB brings to the watched literal management. The re-implication
procedure suggested by [21] is adapted to fit the needs of veriT. We also discuss a few broken
non-core assumptions that may not be unique to veriT.

This chapter is divided in three parts. The first one discusses changes that are necessary
for soundness. The second part addresses techniques used to avoid missing propagations
and improve performance. The last part puts all the pieces together and provides a detailed
algorithm in agreement with the lessons learned from the first two sections. The algorithms
discussed in this chapter have been implemented in veriT and empirically tested on the
SATLIB [16] benchmarks.

Recommendations for CB conversion. Before starting any changes, we advocate for
first defining a set of invariants that should be preserved by the conversion. Then, imple-
ment invariant checkers to ensure that they are respected. This helps to detect any broken
assumption that the solver may have and is very useful for debugging. They are discussed
throughout this chapter. All invariants mentioned in this chapter were used to empirically
check the correctness of the conversion.

Preserved invariants. While some invariants are modified by the conversion, a few remain
and are advised to be checked during the implementation process. Some may seem trivial
but are spelled out for the sake of completeness.

Invariant 4.0.1 (Trail sanity). The trail τ does not falsify a clause in φ.

Invariant 4.0.2 (Trail level ordering). For each level δ ∈ {1, . . . , δ(τ)}, the first literal of τ ∪ω
at level δ is a decision.

Invariant 4.0.3 (Watch list completeness). Each clause C in φ such that |C| ≥ 2 is watched
by two literals. Their corresponding watch lists contain the clause.

35

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Weak vs. strong chronological backtracking. In this document, we discuss two dif-
ferent approaches to chronological backtracking. The first is called weak chronological back-
tracking and consists in the minimum changes required to convert a NCB solver to CB. The
second is called strong chronological backtracking and is a more radical approach that requires
more changes to the solver. The main difference between the two is that the strong approach
does not allow the solver to miss any implication. That is, no clause can be made unit by the
trail τ .

4.1 Weak Chronological Backtracking

In this section, we discuss the minimum necessary changes to convert a NCB solver to a
CB solver. This version of chronological backtracking only maintains weak invariants that
are sufficient for soundness and completeness. The goal is to describe targeted changes with
limited impact on the code base and to provide a stepping stone for the implementation of
strong chronological backtracking.

4.1.1 Greedy Conflict Resolution

During BCP, as many other solvers, veriT uses a greedy approach to conflict detection. That
is, it stops at the first conflict encountered. This premature stopping criterion creates a
situation where the last literal is not fully propagated. Furthermore, veriT adds literals to
the trail before finishing the propagation, temporarily breaking Inv. watched literals. This
is done to simplify the code. In NCB, it is not a problem since after the conflict resolution,
the last literal in τ is guaranteed to be backtracked. Indeed, the last literal is always at
the highest decision level. However, this approach is not compatible with CB. Indeed, since
literals can be propagated at an almost arbitrary decision level, the highest literal in the
conflicting clause may not be the last to be propagated. An example is shown on Fig. 4.1.1.

Solution 1: premature stop with restart. The first proposed solution is to stop prema-
turely the search while propagating ℓ (just as before). If a conflict is found, the solver checks
after backtracking if the top of the trail τ is still ℓ. In this case, the solver removes ℓ from τ
and pushes it at the front of ω. Then the solver resumes. If the trail order is important, then
it is also important that ℓ is pushed at the front of ω and not at the back. Trail ordering is
discussed in more detail in Sect. 4.2.4. This is shown on Figure 4.1.2.

Solution 2: propagate until the end. The second solution consists in continuing the
propagation until the end. BCP then returns the lowest conflict. This ensures that all the
other conflicts will be backtracked. Indeed, if the highest literal in the lowest conflict is
backtracked, then the highest literal in all the other conflicts will be backtracked too.

This approach has the advantage to only perform at most one conflict analysis (some conflicts
do not require conflict analysis) and one backtracking in a row, saving some time. However,
the additional learned clauses created by the restart method may be useful later in the search.
Furthermore, the second approach requires performing more steps when propagating a literal
generating a conflict. Indeed, the solver must always fully propagate a literal, while premature
stopping may be sufficient.

36

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

d
ecisio

n

δ = 2

¬v20

v
1
9 ∨

v
2
0 ∨

v
1

v19

v
1
4 ∨
¬
v
1
9 ∨

v
2
0

v14

d
ecisio

n

δ = 3

v8

v
2 ∨

¬
v
8 ∨

v
1

v2

v
6 ∨

¬
v
8 ∨
¬
v
1
4

v6

v
4 ∨

¬
v
8 ∨
¬
v
1
9

v4

d
ecisio

n

δ = 4

¬v15

v
1
8 ∨

v
1
5 ∨

¬
v
8

v18

v
5 ∨
¬
v
4 ∨
¬
v
1
9 ∨

...

v5
v
1
3 ∨
¬
v
5 ∨

v
2
0

v13

¬
v
1
6 ∨
¬
v
5 ∨

¬
v
8

¬v16

¬
v
1
8 ∨

v
1
6 ∨
¬
v
1
3

⊥

v
1
6 ∨
¬
v
1
3 ∨
¬
v
5

⊥

ω →← τ

Figure 4.1.1: Example of multiple conflicts (from uf20-0736.cnf). v13 was added to τ at
the start of its propagation to simplify the NCB code. When the solver propagates v13, it
detects a conflict on ¬v18 ∨ v16 ∨ ¬v13. The highest literal in the conflict is ¬v18 at level 4.
Therefore, if the solver stops the propagation, it would backtrack to level 3 and the conflict
on v16 ∨ ¬v13 ∨ ¬v5 would be undetected (because v13 was not fully propagated). Since v13
was added to τ prematurely and was not backtracked, it is partially propagated and violates
Inv. trail sanity .

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

v
1
9 ∨

v
2
0 ∨

v
1

v19

v
1
4 ∨
¬
v
1
9 ∨

v
2
0

v14

d
ecision

δ = 3

v8

v
2 ∨

¬
v
8 ∨

v
1

v2

v
6 ∨

¬
v
8 ∨
¬
v
1
4

v6

v
4 ∨

¬
v
8 ∨
¬
v
1
9

v4

v
5 ∨
¬
v
4 ∨
¬
v
1
9 ∨

...

v5

v
1
3 ∨
¬
v
5 ∨

v
2
0

v13

¬
v
1
6 ∨
¬
v
5 ∨

¬
v
8

¬v16

v
1
6 ∨
¬
v
1
3 ∨
¬
v
5

⊥

ω →← τ

ω →← τ

Figure 4.1.2: After backtracking, v13 is still on top of τ . It is therefore moved from τ to ω
and the propagation resumes. It now detects the second conflict and backtrack again.

37

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

We have implemented both methods in the weak chronological backtracking algorithm. Pre-
liminary results show that the first approach is slightly faster than the second one. However,
the difference is not significant enough to draw any strong conclusion. This becomes irrelevant
when implementing strong chronological backtracking, thus we will not discuss this further.

4.1.2 Watched Literals

The usage of watched literals makes a very strong assumption: the order of propagation is the
reverse order of backtracking. That is, if ℓ is propagated before ℓ′, then it will be backtracked
after ℓ′. This property is broken by CB. Indeed, the propagation may propagate ℓ at a higher
level than ℓ′, but before ℓ′. Therefore, ℓ may be backtracked before ℓ′.

This seemingly small detail actually breaks a lot of important properties on which the watched
literals rely. When clauses are conflicting, the solver expects that the watched literals will be
backtracked after conflict resolution. This assumption is no longer true in CB. Therefore, the
solver must ensure that this property is recovered before losing sight of the clause. Whenever
a conflict is detected, the conflicting clause (learned clauses included) ensures that at least
one watched literal of the conflict will be backtracked. That is, at least one of the watched
literals is at the highest decision level in the conflict.

Invariant 4.1.1 (Watch literal levels). Let a clause C ∈ φ watched by c1 and c2. If C becomes
conflicting when propagating ¬c1 or ¬c2, then δ(c1) = δ(C) ∨ δ(c2) = δ(C).

In veriT, the data structure used to store and update watch lists follows the idea of [11].
That is, the watch list is an array that is being explored with two pointers: a reading and a
writing head. The reading head is used to find the candidate clause, and the writing head is
used to write the clause back to the watch list if the clause remains watched. The algorithm
is as shown in Alg. 9.

Practical aspects of the watch lists and their modification during the execution mean that
special attention is required when replacing the watched literals of conflicting clauses to ensure
that the watch lists remain valid. We need to be careful when modifying a list on which we
are iterating. More specifically, while the read and write heads are different, there may be
twice the same clause in the watch list. This is not a difficult technical challenge, but could
be easily missed when tempering with the watch lists.

Remark 4.1.1. Pay attention that Alg. 9 comes from a NCB solver. It is not compatible with
CB, but this insight is used later when designing the new BCP algorithm. For the sake of
readability, this implementation detail is omitted in the following algorithms. We trust the
reader to keep this in mind if they wish to implement the algorithms.

Invariant 4.1.2 (Weak watched literals). Let a clause C ∈ φ watched by c1 and c2. Either c1
or c2 is not falsified by τ . Formally: ¬c1 /∈ τ ∨ ¬c2 /∈ τ

Inv. weak watched literals is a weakening of Inv. watched literals that allows unit clauses to
slip through. Indeed, Inv. watched literals ensures that no unit nor falsified clause can exist
in φ under τ . As is discussed in Sect. 4.2.3, this invariant is difficult to maintain in CB.
Inv. weak watched literals is sufficient to ensure that the solver does not miss any conflict,
guaranteeing soundness. If at least one of the watched literals is not falsified in τ , then, to
have a conflict, the other watched literal must be falsified by ω, and the solver will detect at

38

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

least one conflict when propagating it (their may be several conflicts with one propagation).

4.1.3 Blockers

When using CB, blocker literals can no longer be used as easily as before. Indeed, the blockers
made the assumption that, because they were implied before the propagation of the negation
of the watched literals, they will be backtracked after. As discussed earlier, this is no longer
the case.

Example 4.1.1. Consider the clauses C1, . . . , C5 and the trail τ shown in Fig. 4.1.3a. A
conflict is detected at level 4. The solver learns the clause C6 = ¬e ∨ ¬d. The propagation
then continues.

When propagating ¬b and ¬a, the clause C1 = a∨ b∨ c is watched by a and b, but is blocked
by c that is satisfied. Therefore, the watched literals remain unchanged. If now a conflict
backtracks to level 1 or level 2, then nothing prevents the solver from propagating ¬c and not
notice the conflict on C1. This is a violation of Inv. trail sanity .

C1 = a ∨ b ∨ c
C2 = ¬b ∨ d
C3 = ¬a ∨ d
C4 = ¬e ∨ ¬d ∨ ¬f
C5 = ¬d ∨ f d

ecision

d
ecision

d
ecision

C
5

C
4

δ = 1

e
δ = 2

c
δ = 3

d f ⊥

ω →← τ

(a) A conflict occurs when propagating f , C4 is conflicting with τ ∪ ω, and conflict analysis is
triggered.

C1 = a ∨ b ∨ c
C2 = ¬b ∨ d
C3 = ¬a ∨ d
C4 = ¬e ∨ ¬d ∨ ¬f
C5 = ¬d ∨ f
C6 = ¬d ∨ ¬e

d
ecisio

n

d
ecisio

n

C
6

C
2

C
3

δ = 1

e
δ = 2

c

¬d ¬b ¬a

(b) After backtracking and performing BCP again, C1 is watched by two falsified literals. If c is
backtracked and ¬c is propagated instead, then C1 is not detected as a conflict.

Figure 4.1.3: Example of the failure of standard blockers in CB (handcrafted example).
Blocker cannot be used in CB without other assumptions. c is at a higher decision level than
a and b, therefore c does not qualify as a weakened blocker.

Therefore, we need a weakened blocker that is not taken into account except if the watched
literals are at a higher level than the blocker. In our implementation, we let this weakened

39

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Algorithm 9 BCP with read-write pointers in NCB

1: procedure BCP()
2: while ω ̸= ∅ do
3: ℓ← First(ω)
4: c1 ← ¬ℓ
5: j ← 0
6: n← the number of clauses watched by c1
7: for i← 0 to n− 1 do
8: C ← the ith clause watched by c1
9: if C has satisfied blocker in τ ∨ ω then

10: jth watched clause of c1 ← C ▷ Keep the clause in the watch list
11: j ← j + 1 ▷ Move the writing head
12: continue
13: c2 ← the other watched literal of C
14: if c2 ∈ τ ∪ ω then
15: jth watched clause of c1 ← C ▷ Keep the clause in the watch list
16: j ← j + 1 ▷ Move the writing head
17: continue ▷ Clause is satisfied
18: r ← ⊥
19: for ℓ′ in C \ {c1, c2} do
20: if ¬ℓ′ /∈ τ ∪ ω then
21: r ← ℓ′

22: break
23: if r ̸= ⊥ then
24: if r ∈ τ ∪ ω then
25: SetBlocker(C, r)
26: jth watched clause of c1 ← C ▷ Keep the clause in the watch list
27: j ← j + 1 ▷ Move the writing head
28: continue
29: else
30: r starts watching C ▷ By not copying C to the watch

list, we are effectively removing
it

31: if ¬c2 ∈ τ ∪ ω then ▷ Clause is conflicting
32: copy the watch list [i to n] to [j to n− (i− j)]
33: return C
34: jth watched clause of c1 ← C ▷ Keep the clause in the watch list
35: j ← j + 1 ▷ Move the writing head
36: ω ← ω ∪ {c2} ▷ Clause is unit

37: truncate the watch list of c1 to j clauses
38: ω ← ω \ {ℓ}
39: τ ← τ ∪ {ℓ}
40: return ⊤

40

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

blocker aside and do not use it. Otherwise, Inv. weak watched literals would be violated. In
theory, it is possible to use, but ignoring this complication is simpler and does not seem to
have a significant impact on performance. We therefore disabled blockers altogether. Future
work could investigate the use of weakened blockers.

4.1.4 Purge

In chronological backtracking (without missed re-implication), it is possible that a clause is
satisfied by a watched literal ℓ (δ(ℓ) > 0) and that its second watched literal is falsified at
level 0. In theory, this is not a problem for either completeness and soundness. However, the
Purge procedure from veriT makes the assumption that no watched literal can be falsified
at level 0 unless the clause is conflicting at level 0 (UNSAT) or satisfied at level 0. The Purge
procedure should not remove literals from clauses without paying attention to the watch lists.
Since the assumption that clauses cannot be watched by literals at level 0 no longer holds in
CB, the procedure must be modified to take into account this possibility. While this is not
hard to fix (by watching a new literal if the removed literal was removed), it is an attention
point that must be kept in mind when implementing CB.

4.2 Strong Chronological Backtracking

The modifications described in the previous section are necessary to have a functioning solver.
However, a lot of unit clauses are missed by solely implementing these changes. We here
present optimizations to prevent missing such clauses and restore an invariant from NCB.
This method will provide a solver with stronger invariants at the cost of a more complex
implementation.

Invariant 4.2.1 (Watched literals). Let a clause C ∈ φ watched by c1 and c2. If c1 or c2 is
falsified by τ , then the other literal is satisfied by τ ∪ ω.
Inv. watched literals ensures that no clause is made unit by the trail τ . Indeed, if a clause C
is unit, then all the literals but one are falsified, therefore, at least one of the watched literals
must be falsified. If the other watched literal is not satisfied, then Inv. watched literals is
violated. Otherwise, the unassigned literal is not watched. In that case, both watched literals
are falsified and Inv. watched literals is violated. Therefore, maintaining Inv. watched literals
ensures that no clause is unit, nor conflicting. It is the same invariant as in NCB.

Remark 4.2.1. As for NCB, we recover an interesting property of Inv. watched literals. If it
is satisfied, then a clause C conflicting with τ ∪ ω mean that the two watched literals of C
are in the propagation queue ω. This will no longer be true after the clause is detected as a
conflict since we want to preserve Inv. watched literal levels and might change the watched
literals for that reason.

Inv. watched literals is not necessary for completeness and soundness of the solver; a weaker
version such as Inv. weak watched literals is enough. However, not respecting it certainly
hurts the performance of the solver. Indeed, completeness is not lost since the literals that
should have been implied could still be propagated later. Soundness is not lost either, since
the reasons for the lost literals will still be detected as conflicts if the missed implications are
propagated with the other polarity. But missing inferences is the difference between a clever
exploration and a pointless wander in the search space.

41

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

4.2.1 Backtracking

While [22] provides a backtracking algorithm, as discussed previously, it lacks some details.
In particular, it does not suggest recovering the propagating queue ω. The Alg. 8 can be
modified to account for this as shown in Alg. 10.

It is important to note that the queue ω is not emptied like in NCB. The literals in ω that are
lower than the backtracking level still need to be propagated after backtracking. The literals
that are higher than the backtracking level must be filtered out from ω. Not only is it a good
idea to preserve literals when possible, but it is also necessary to not violate Inv. watched
literals. Indeed, if ω is emptied, then the propagations that were implied before the conflict
are lost and some clauses may be made unit by removing the satisfied literal in ω and keeping
the falsified watched literal in τ .

This new backtracking algorithm preserves Inv. watched literals provided that, if a watched
literal ℓ is satisfied at level δ(ℓ), the other watched literal is not falsified, or is falsified at a
level higher than δ(ℓ). Indeed, if the other watched literal is not falsified, then backtracking
ℓ only does not violate Inv. watched literals. If the other watched literal is falsified at a
higher level than δ(ℓ), then it will be backtracked as well, and the invariant is preserved.
This assumption is not trivial to satisfy, and is discussed later in this section. This can be
expressed as Inv. satisfied watched literal level . Inv. satisfied watched literal level is trivially
satisfied in NCB (due to the order of propagations) but must be enforced in CB.

Invariant 4.2.2 (Satisfied watched literal level). Let a clause C ∈ φ be watched by c1 and c2.
If c1 ∈ τ and ¬c2 ∈ τ , then δ(c1) ≤ δ(c2).

Algorithm 10 Backtracking with Chronological Backtracking

1: procedure Backtrack(δ)
2: β ← ∅
3: while δ(τ) > δ do
4: ℓ← Pop(τ)
5: if δ(ℓ) < δ then
6: β ← {ℓ} ∪ β
7: τ ← τ ∪ β
8: β ← ∅
9: while ω ̸= ∅ do

10: ℓ← Dequeue(ω)
11: if δ(ℓ) < δ then
12: β ← β ∪ {ℓ}
13: ω ← β

4.2.2 Multiple Unit Clauses

When the solver detects a conflict, it is not always required to perform conflict analysis.
Indeed, if the conflicting clause already has a unique literal at level δ(C), then backtracking
to δ(C)− 1 creates a unit clause. [19] suggests to simply backtrack and propagate the literal
because C is now unit. It is actually possible to generate multiple unit clauses at once.
Fig. 4.2.1 shows such an instance. Therefore, remembering all the conflicts can become useful

42

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

to check whether some of them became unit clauses after backtracking. In the next subsection,
we see that it is actually necessary to remember the conflicts anyway, so this optimization is
not costly.

Since conflicts have both watched literals in the propagation queue ω, after backtracking, the
clause could be made unit by τ ∪ ω, but not by τ alone. This is acceptable for Inv. watched
literals. Since the conflicts are stored anyway, we might as well take advantage of them. The
impact on performance of this optimization is not yet clear and is left for future work.

4.2.3 Missed Lower Implications

As discussed in the previous chapter, it is now possible to generate a trail that satisfies a
clause by only one literal at a level higher than all the other literals in the clause. This is
called a missed lower implication. The satisfying literal should have been implied at a lower
level (since the clause is unit at that level). It was not the case because the clause became
unit after it was satisfied. An example of a missed implication is given in Fig. 4.2.2. The
goal of fixing missed lower implications is to obtain a trail that satisfies Inv. satisfied watched
literal level . Indeed, if a clause is satisfied by a literal at level δ, then the other watched literal
must not be falsified or belong to a level higher than δ. If it is not the case, then the clause
might not satisfy Inv. watched literals after backtracking. Every clause that would not satisfy
Inv. satisfied watched literal level after adding ℓ to τ becomes a missed lower implication
before violating the invariant. More concretely, a missed lower implication has at least one
literal in ω. Therefore, the clause is not yet made unisat by τ . If missed lower implications
are fixed, then the invariant can remain satisfied.

Missed lower implications were documented by [21]. However, their approach is impractical
in the context of veriT. Indeed, their implementation changes the trail into a linked list
structure. However, in veriT, it is not really possible to change the trail data structure
without a major rewrite of the code. The solver counts over 1300 occurrences of calls to the
structure of the SAT solver. Therefore, the method from [21] must be adapted to the current
structure of the solver.

Detecting missed lower implications. In order to detect missed lower implications, we
introduce a property of clauses that can be enforced when necessary. This is a variation of
what [21] refers to as BCP-safety conditions. Previously, the order of the watched literals
was not relevant, if C was watched by c1 and c2, then c1 and c2 could be swapped without
any consequences. However, in this new framework, the order of watched literals becomes
important. The following property can be imposed:

Property 4.2.1 (Literal ordering). Let C ∈ φ be a clause watched by c1 and c2 in that specific
order.

• c1 is unassigned and ¬c2 ∈ τ ∪ ω iff C is made unit by τ ∪ ω and δ(c2) = δ(C \ {c1}).

• ¬c1 ∈ τ ∪ ω iff the clause is conflicting and δ(c1) = δ(C), δ(c2) = δ(C \ {c1}). That is,
c1 and c2 are respectively the highest and second-highest literals in C.

• c1 ∈ τ ∪ ω and ¬c2 ∈ τ ∪ ω iff the clause is unisat and δ(c2) = δ(C \ {c1}).

43

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

d
ecisio

n

δ = 2

¬v20

d
ecisio

n

δ = 3

¬v19

¬
v
7 ∨

v
1
9 ∨

v
1

¬v7

d
ecisio

n

δ = 4

¬v18

v
1
7 ∨

v
7 ∨

v
1

v17

v
3 ∨

v
1
8 ∨
¬
v
1
7

v3

¬
v
1
3 ∨

v
1
8 ∨
¬
v
1
7

¬v13
¬
v
2 ∨
¬
v
1
7 ∨

v
1
¬v2

¬
v
3 ∨
¬
v
1
7 ∨

v
7

⊥

v
1
3 ∨
¬
v
1
7 ∨

v
1
9

⊥

ω →← τ

(a) Before backtracking. Two conflicts are found.

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecisio

n

δ = 3

¬v19 ¬v7

¬
v
7 ∨

v
1
9 ∨

v
1

v
1
7 ∨

v
7 ∨

v
1

v17

¬
v
2 ∨
¬
v
1
7 ∨

v
1

¬v2

¬
v
3 ∨
¬
v
1
7 ∨

v
7

¬v3

v
1
3 ∨
¬
v
1
7 ∨

v
1
9

v13

ω →← τ

(b) After backtracking and repairing the conflicts. v17 can safely be added to the trail.

Figure 4.2.1: Example of multiple unit clauses (from uf20-0651.cnf). There are two conflicts
at the lowest conflict level (4) when propagating v17. Assume that the clause ¬v3 ∨¬v17 ∨ v1
is returned. It has a single literal at the highest level. Therefore, following the idea described
in Sect. 3.2, the solver backtracks to level 3, then propagates v3. However, we should not
forget to propagate v13 since v13 ∨ ¬v17 ∨ v19 also became unit after backtracking.

44

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

¬
v
1
7 ∨

v
1
9 ∨

v
1 ∨

...

¬v17

d
ecision

δ = 4

v2

¬
v
1
3 ∨

¬
v
2 ∨

v
2
0

¬v13

v
1
4 ∨

v
1
3 ∨

v
1
9

v14

v
9 ∨
¬
v
1
4 ∨

¬
v
2

v9

v
1
1 ∨

v
1
7 ∨

v
1
9

v11

v
1
8 ∨

¬
v
2 ∨
¬
v
1
1

v18
v
1
2 ∨
¬
v
9 ∨
¬
v
1
1

v12

ω →← τ

Figure 4.2.2: The literal v14 is a missed lower implication because the clause v14 ∨ ¬v11 ∨ v20
became unit at decision level 3 when v11 was being propagated.

In the following algorithms, we enforce Prop. literal ordering with a call to the RestoreLit-
eralOrder(C) procedure. Detecting conflicts, unit clauses and missed lower implications
becomes trivial when Prop. literal ordering holds. However, it can be expensive to maintain.
Detecting a missed lower implication simply checks that the first watched literal is satisfied
and that the second watched literal is falsified at a lower level. If it is the case, then the
clause is added to the re-implication queue ρ.

When enforcing Prop. literal ordering on clauses that see one of their watched literal falsified,
and after checking for conflicts, unit clauses or missed lower implications, we ensure the
following property:

Property 4.2.2 (Registered missed lower implications). Let a clause C ∈ φ watched by c1 and
c2 in that order, ℓ be implied but not yet propagated (ℓ ∈ ω ∧ ℓ /∈ τ), and c1 = ¬ℓ ∨ c2 = ¬ℓ.
After Prop. literal ordering is enforced on C, if c1 ∈ τ ∪ω and ¬c2 ∈ τ ∪ω, then δ(c1) ≤ δ(c2)
or C ∈ ρ.

After re-implication, Prop. registered missed lower implications has the additional constraint
that ρ = ∅. Therefore, we have: For every clause C watched by ¬ℓ, if c1 ∈ τ ∪ ω and
¬c2 ∈ τ ∪ ω, then δ(c1) ≤ δ(c2). Since ℓ ∈ ω, ℓ can safely be added to τ without breaking
Inv. satisfied watched literal level . If δ(c1) > δ(c2) before re-implication, the clause C is added
to ρ, and c1 is re-implied at level δ(c2). Therefore, δ(c1) ≤ δ(c2) holds after re-implication.

Remark 4.2.2. Using the Prop. literal ordering breaks the property that states that conflicting
clauses see both their watched literals falsified in ω. Indeed, RestoreLiteralOrder changes
the watched literals to be the highest in the clause (when necessary). It is possible that
the highest literal in the clause is not in ω but in τ . Therefore, the property no longer
holds. Instead, we can state that conflicts have at least two literals falsified in ω. Since the

45

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

watched literals were just moved around, the literals falsified in ω are still falsified in ω. This
trade off gives us the guarantee that both watched literals will be backtracked if the clause is
conflicting.

Dealing with missed lower implications. Once the solver finds a set ρ of reasons C
for missed lower implications ℓ, it resolves them. Iteratively, each missed lower implication
has its level and reason updated to match the new reason C for the propagation. In turn,
clauses watched by ¬ℓ can themselves generate missed lower implications. Therefore, each
clause in the watch list is checked for the re-implication criterion. This process goes on until
the re-implication queue is empty. The procedure is terminating since the levels are bounded
by zero, and the levels of literals always decrease.

During the process of checking clauses in the watch list of ¬ℓ, Prop. literal ordering must
be enforced again since the level of literals has changed. RestoreLiteralOrder must
therefore be efficient since it is done very frequently.

Level of conflicts. Since the level of literals is subject to change when the re-implication
procedure is called, we cannot search for the lowest conflict in a greedy fashion (that is, just
keep the lowest level conflict and replace it if we find a lower conflict). Instead, we keep track
of the set of conflicts found during the search and search for the lowest conflict after the
entire literal is propagated, and the re-implication procedure is finished. The set of conflicts
is called κ.

Level collapsing. It is possible that a missed lower implication involves a decision literal.
In this case, an entire level is collapsed, and the decision levels above must be updated. It
might be that, if the decision literal ℓ is re-implied several levels lower than previously, some
literals in the collapsed level could be implied at level higher than δ(ℓ). This case is handled
by the ReImply procedure. Therefore, collapsing a level δ can only trivially bring down every
level greater than or equal to δ by exactly one. All the literals strictly higher than δ must be
brought down by one level, and literals at level δ can be descended by one level too. Since
a decision is going to disappear, the above decision must fill the void. This is done by the
LevelCollapse(δ) procedure in Alg. 11.

Algorithm 11 Level collapse

1: procedure LevelCollapse(δ)
2: for l ∈ τ ∪ ω do
3: if δ(l) ≥ δ then
4: δ(l)← δ(l)− 1

Re-implying in propagation queue. It is possible that the re-implied literal is not yet
on the trail τ but is still in the propagation queue ω. In that case, when the re-implication
procedure runs, it naturally propagates the literal, which can then be removed from ω and
put in τ . In practice, re-implying a literal is the same procedure as to propagate it for the
first time. One could assume that the re-implication differs from propagation by the fact
that re-implication cannot detect conflicts. That statement is wrong. We just established
that it is possible that the re-implication propagates a literal for the first time. Therefore, it

46

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

might detect a conflict. However, if the literal was already propagated in τ and still watches
a clause, then the clause must have been a conflict or a unit clause. In that case, conflict
analysis would have been triggered earlier, or another literal would have been added to ω to
satisfy the unit clause. Therefore, the re-implication of literals in τ cannot detect conflicts.
This does not justify the fact to duplicate the propagation procedure.

Remark 4.2.3. In practice, the statement above is not perfectly accurate. It is possible that
re-implying a propagated literal encounters a conflict, but this conflict has been discovered
before. For example (in Fig. 4.2.3), the conflict v5 ∨ v9 ∨ v16 was detected when propagating
¬v16. But in addition to the conflict, the solver also noticed some missed lower implications.
When it re-implied ¬v9 (¬v9 in τ), the conflict was met again. Notice that the distinction
between τ and ω is no longer marked by the dotted line. This is because the assignment must
be reordered before re-implication. It is discussed in the next subsection. For the sake of this
example, the only necessary piece of information to understand the example is that boxed
literals are in ω and the others are in τ .

v
1

v1

d
ecision

δ = 1

¬v4

¬
v
1
6 ∨
¬
v
1
3 ∨

v
4

¬v16
¬
v
5 ∨

v
1
6 ∨

v
4

¬v5

v
1
8 ∨

v
3
∨
v
5

v18

¬
v
9 ∨
¬
v
1
8 ∨
¬
v
1

¬v9

d
ecision

δ = 2

v8

¬
v
1
2 ∨

¬
v
8 ∨

v
1
5

¬v12

¬
v
1
7
∨
v
1
2 ∨

v
1
6

¬v17

v
2 ∨

v
1
2 ∨

v
9 ∨

...

v2

v
6
∨
v
9 ∨

v
5

v6

v
2
0
∨
v
9 ∨
¬
v
1
8

v20

v
5 ∨

v
9 ∨

v
1
6

⊥

Figure 4.2.3: Example of multiple detections of identical conflict (from uf20-0355.cnf).
While propagating ¬v16 at level 1, the solver noticed a conflict v5 ∨ v9 ∨ v16 and some re-
implications. When ¬v9 and ¬v5 were re-implied, the solver found the same conflict.

Remark 4.2.4. A reader with a keen eye might notice that the conflict does not have two
literals falsified in ω. This is because when the conflict was originally discovered, ¬v5 and
¬v16 were still in ω. When ¬v5 was re-implied, ¬v5 was moved to τ since it was considered
to be propagated. This is why the diagram does not show ¬v5 in ω. Since the conflict is
registered in κ, ¬v5 is going to be backtracked in any case. Prematurely adding it to τ makes
the implementation simpler without making a difference after recovering from the conflict.

4.2.4 Topological Consistency

When we discussed conflict analysis, we briefly mentioned that the algorithm used to compute
the first UIP makes the assumption that the trail is in topological order with respect to the
implication graph. In other words, a literal ℓ at position p in the trail τ ∪ ω must have a
reason C whose literals are all located before p in the trail τ ∪ω. In NCB, this is trivially true.
Indeed, the trail behaves exactly like a stack. Only the tail is modified either by removing
literals, which does not break the topological order, or by pushing literals. Pushed literals

47

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

are either decisions, which have no parent in the graph (therefore not breaking the property),
or implied literals, which are implied by a clause that is unit under the assignment τ ∪ ω;
therefore following the topological order. In CB without re-implication, this property also
holds. The only difference is that literals can be removed in the middle of the assignment.
In general, this could be an issue; however, literals are removed from the highest levels to
the lowest; and if one literal at level δ is removed, then all literals above level δ are removed
as well. Furthermore, literals at a lower level than δ cannot depend on literals above δ by
construction. Therefore, after removing every literal above δ, the topological order of the
remaining assignment persists.

When adding re-implication, this property no longer holds. Indeed, when a literal ℓ is re-
implied from level δ to δ′ (δ > δ′), it means that a clause C is unisat with ℓ at level δ′.
The clause C can only have become unisat after ℓ was added to the propagation queue ω,
otherwise, ℓ would have been propagated earlier. Generally (see Rem 4.2.5), that means that
one of the literals in C is located after ℓ in τ ∪ ω. Therefore, changing the reason of ℓ to be
C breaks the topological order. An example of this can be seen on Fig. 4.2.4. Literal v14 is
being re-implied. The reason for v14 no longer respects the topological order and depends on
v11 that is positioned after v14 in the trail.

Remark 4.2.5. Although it is possible that ℓ is implied twice at different levels during another
literal’s propagation, leading to a re-implication without breaking the topological order, this
is not usually the case.

To overcome this problem, two solutions can be considered: (1) We modify the conflict
analysis to no longer need the topological order. (2) We restore the topological order. Since
it is usually dangerous to blindly break invariants that can be preserved without too much
computation costs, and we know from [21] that restoring the order is a fine strategy, we
decided to implement the second solution. Some future work could consist in implementing
the first approach. In Chap. SMT solving, we discuss the fact that it might be a preferable
idea in the context of SMT.

Invariant 4.2.3 (Topological consistency). The assignment τ ∪ ω is a topological order of the
implication graph of τ ∪ ω.

Solution with Linked Lists [21]

[21] changes the paradigm of the trail by representing it as a doubly linked list with pointers
to every decision. This structure allows for cheap insertion and deletion of elements in the
middle of the trail. The main advantage is that it allows to

• keep the trail ordered by decision level,

• cheaply preserve the Inv. topological consistency ,

• cheaply backtrack to a given level.

When re-implying a literal, it suffices to extract the literal from its position in the linked list,
and to insert it at the end of its new level. This is done in O(1) if the location of the literal
is known in the list. The example of Fig. 4.2.4 is illustrated on Fig. 4.2.5.

48

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

¬
v
1
7 ∨

v
1
9 ∨

v
1 ∨

...

¬v17

d
ecision

δ = 4

v2

¬
v
1
3 ∨

¬
v
2 ∨

v
2
0

¬v13
v
1
4 ∨
¬
v
1
1 ∨

v
2
0

v14

v
9 ∨
¬
v
1
4 ∨

¬
v
2

v9

v
1
1 ∨

v
1
7 ∨

v
1
9

v11

v
1
8 ∨

¬
v
2 ∨
¬
v
1
1

v18

v
1
2 ∨
¬
v
9 ∨
¬
v
1
1

v12

ω →← τ

(a) The trail after re-implying v14 at level 3. The reason for v14 is now v14 ∨ ¬v11 ∨ v20.

¬v1 ¬v20 ¬v19 ¬v17 ¬v2 ¬v13 v14 v9 v11 v18 v12

(b) Implication graph of the trail in Fig. 4.2.4a.

Figure 4.2.4: Fixing the missed lower implications in Fig. 4.2.2 messes up the topological
order. The reason for v14 now depends on v11, which is located after v14 in the trail.

49

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

¬v1¬v1

¬v20

¬v19 ¬v17 v11

v2 ¬v13 v14 v9 v18 v12

(a) Trail before re-implication.

¬v1¬v1

¬v20

¬v19 ¬v17 v11 v14

v2 ¬v13 v9 v18 v12

(b) After re-implying ¬v14, the trail is updated. The order of literals is indeed a topological sort
of the implication graph.

Figure 4.2.5: Trail represented as a doubly linked list. Squares represent decisions, circles
represent implied literals. A pointer to each decision is kept in a decision stack for fast access.

Reordering the Assignment

Since veriT is not a standalone SAT solver, we cannot change the data structure of the trail.
However, we can still modify the semantics of the data structure, and reorder the trail to
preserve Inv. topological consistency . The problem is that we cannot simply change the order
of the trail since, as discussed previously, the trail τ and the propagating queue ω share the
same memory space (a C array). The only distinction between the two is a pointer to the
first element of ω. Obviously, changing the order of the trail might interleave propagated and
non-propagated literals. Therefore, we need a new way of interpreting the data structure. In
practice, most algorithms treat the full partial assignment π = τ ∪ ω together. Therefore, we
can change the meaning of the array to be π = τ ∪ω in an order that would suit other needs.
However, we still need to be able to distinguish between τ and ω. To do so, we add a circular
queue that keeps track of the literals that are in ω. The meaning of ω remains unchanged, the
only difference is that τ is no longer directly accessible, and should be accessed as τ = π \ ω.
Changing the meaning of the array does not have any impact on the interaction between
the SAT solver and the rest of the program, since the SMT solver only queries the partial
assignment when all the literals in ω have been propagated (ω = ∅). That is, the SMT solver
queries the partial assignment when π = τ . However, changing the order of literals impacts
the behavior of the SMT solver because it assumes that the partial assignment behaves like
a stack. This would be true no matter the data structure used (linked list or array).

The goal of the reordering is to ensure that once a literal is re-implied, its position still follows
the topological order. To do so, we shall proceed in two steps. First, before any re-implication,
we sort the trail by decision level. This ensures that any re-implication does not break the

50

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

topological order. Indeed, since all the literal at a decision level δ′ are before any literal at
level δ if δ > δ′, if a literal is re-implied from level δ to δ′, it is located after all the literals
that could be in the reason for the re-implication. Then, during successive re-implication,
we wish to keep the topological and decision level order. To that effect, we sink the newly
re-implied (and newly implied) literals to be on top of their new level.

The assignment reordering can be done in linear time with respect to the length of the partial
assignment with Alg. 12. It is important that this sorting algorithm is stable, i.e., at the same
level, the literals remain in the same order. An example of the sinking procedure is shown in
Fig. 4.2.6. First, the trail must be reordered by levels. Then, the literal v18 is re-implied at
level 1, and sunk to the appropriate position.

Reordering the trail is used to obtain the property Prop. assignment ordering . This is used
during re-implication to ensure that re-implying a literal does not break the topological order.

Property 4.2.3 (Assignment ordering). The assignment π = τ ∪ω is ordered by decision levels.

Remark 4.2.6. To make this procedure faster, the location of each decision in the stack is
remembered. In ReorderAssignment(), this is the goal fulfilled by ∆′. It requires a bit
of bookkeeping, but with that information, we get two advantages: (1) The new location of
a sunk literal is known directly. It replaces the decision one level above its new level. (2)
Searching the initial position of the sunk literal is cheaper if we know that it is located after
the decision of its current level. This detail is not represented in the algorithm, but it is
implemented in veriT.

Algorithm 12 Reorder the partial assignment

1: procedure ReorderAssignment()
2: ∆← array of zeros of length δ(π) + 1
3: for ℓ ∈ π do
4: ∆[δ(ℓ)]← ∆[δ(ℓ)] + 1
5: ▷ ∆ contains the number of literals at each

level
6: ∆′ ← ∆
7: for δ ∈ 1, . . . , δ(π) do
8: ∆′[δ − 1]← ∆′[δ − 1] + ∆′[δ] ▷ ∆′[δ] contains the index of the first lit-

eral of level (δ + 1) (if δ < δ(π))

9: π′ ← π
10: for ℓ ∈ π′ do
11: π[∆′[δ(ℓ)]−∆[δ(ℓ)]]← ℓ
12: ∆[δ(ℓ)]← ∆[δ(ℓ)]− 1

13: procedure SinkLiteral(ℓ, π)
14: π ← π \ {ℓ}
15: πleft ← {ℓ′ ∈ π : δ(ℓ′) ≤ δ(ℓ)}
16: πright ← π \ πleft
17: π ← πleft ∪ {ℓ} ∪ πright

51

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

v
3 ∨

v
1
9 ∨

v
1

v3

¬
v
7 ∨

v
1

¬v7

¬
v
4 ∨

v
7 ∨

v
1

¬v4

¬
v
6 ∨

v
1
9 ∨

v
7

¬v6

v
1
6 ∨

v
7 ∨

v
1

v16

¬
v
1
3
∨
v
6 ∨

v
7

¬v13

v
1
8
∨
v
6 ∨

v
7

v18

¬
v
1
5
∨
v
1
3
∨
v
7

¬v15
¬
v
8
∨
v
1
9 ∨

v
4

¬v8
¬
v
9
∨
v
6 ∨

v
1
9

¬v9

¬
v
2
∨
v
6 ∨

v
1
9

¬v2

d
ecision

δ = 1

¬v1

¬
v
7 ∨

v
1

¬v7

¬
v
4 ∨

v
7 ∨

v
1

¬v4
v
1
6 ∨

v
7 ∨

v
1

v16

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

v
3 ∨

v
1
9 ∨

v
1

v3

¬
v
6 ∨

v
1
9 ∨

v
7

¬v6

¬
v
1
3
∨
v
6 ∨

v
7

¬v13

v
1
8
∨
¬
v
1
6 ∨

v
1

v18

¬
v
1
5
∨
v
1
3
∨
v
7

¬v15

¬
v
8
∨
v
1
9 ∨

v
4

¬v8

¬
v
9
∨
v
6 ∨

v
1
9

¬v9

¬
v
2
∨
v
6 ∨

v
1
9

¬v2

d
ecision

δ = 1

¬v1

¬
v
7 ∨

v
1

¬v7

¬
v
4 ∨

v
7 ∨

v
1

¬v4

v
1
6 ∨

v
7 ∨

v
1

v16

v
1
8
∨
¬
v
1
6 ∨

v
1

v18

d
ecision

δ = 2

¬v20

d
ecision

δ = 3

¬v19

v
3 ∨

v
1
9 ∨

v
1

v3

¬
v
6 ∨

v
1
9 ∨

v
7

¬v6

¬
v
1
3
∨
v
6 ∨

v
7

¬v13

¬
v
1
5
∨
v
1
3
∨
v
7

¬v15

¬
v
8
∨
v
1
9 ∨

v
4

¬v8

¬
v
9
∨
v
6 ∨

v
1
9

¬v9

¬
v
2
∨
v
6 ∨

v
1
9

¬v2

Figure 4.2.6: Example of a sinking literal (from uf20-0024.cnf). The literal v18 is re-implied
and must be sunk to preserve the order of the assignment.

52

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

4.3 Complete Algorithm

In this section, we introduce the algorithms used in veriT to convert the SAT solver to
chronological backtracking. We follow both the required and recommended changes to obtain
the final algorithm.

CDCL. CDCL is modified to take into account the new meaning for the partial assign-
ment π, and new data structures used to store the propagation queue ω, the re-implication
queue ρ and the set of conflicts κ. The algorithm is presented in Alg. 13. Similarly to NCB
CDCL, the loop first calls BCP, then if no conflict is found, it decides a new literal. If no such
literal exist, then π is complete and a model was found. However, if some conflict is found,
there might be several in the set κ. This is handled by the RepairConflict() procedure. If
no conflict is found, the algorithm takes a decision and continues.

Algorithm 13 CDCL with missed lower implication and multiple conflict detection

1: φ← ∅ ▷ The set of clauses
2: π ← ∅ ▷ The partial assignment
3: ω ← ∅ ▷ The propagation queue
4: ρ← ∅ ▷ The re-implication queue
5: κ← ∅ ▷ The set of conflicts
6: procedure CDCL(φ′)
7: φ← φ′ ▷ Set the input clauses
8: while ⊤ do
9: BCP()

10: if κ = ∅ then ▷ No conflict detected
11: ℓ← Decide()
12: if ℓ = ⊥ then ▷ No more literals to propagate
13: return π
14: δ(l)← δ(π) + 1
15: πd ← πd ∪ {ℓ} ▷ Add ℓ to the decision set. πd does not have

a proper data structure but is a metadata
of π.

16: ω ← ω ∪ {ℓ}
17: π ← π ∪ {ℓ}
18: if RepairConflict() = ⊥ then ▷ Conflict at level 0
19: return ⊥

Backtracking. Since the data structure used changed, the Backtracking procedure must
also be adapted. Alg. 14 shows the small changes required. This is not very sophisticated but
was added for the sake of completeness. In essence, we no longer consider the trail and the
propagation queue separately, but consider the partial assignment as a whole. At the end, we
still need to filter out backtracked literals in the propagation queue.

Conflict handling. It is possible that several conflicts are detected at the same time. In
this case, we need to search for the lowest conflict C, such that resolving it also resolves all
the others in κ. As described in Alg. 7, it is possible that C is already a valid learned clause,

53

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Algorithm 14 Backtracking with Chronological Backtracking

1: procedure Backtrack(δ)
2: β ← ∅
3: while δ(π) > δ do
4: ℓ← Pop(π)
5: if δ(ℓ) < δ then
6: β ← {ℓ} ∪ β
7: else
8: δ(ℓ)←∞
9: π ← π ∪ β

10: ω ← ω ∩ π ▷ Remove all literals that are no longer in π

that is, it has only one literal at level δ(C). In which case the conflict analysis is not triggered.
If it is triggered, a first backtracking step is performed to set up the partial assignment π for
analysis.

A difference with Alg. 7 resides in the fact that the set κ can now contain several unit clauses.
(The learned clause qualifies as a conflicting clause.) Therefore, we need to search for all unit
clauses in κ and propagate them. This is done in lines 9 to 21 of Alg. 15.

Remark 4.3.1. It is possible that a literal ℓ is implied by two clauses C1 and C2 (δ(C1) > δ(C2))
that were conflicting before backtracking. ℓ might be implied by C1 because it became unit,
then C2 detects a missed lower implication and re-implies ℓ. In this case, re-implication is
almost free. Indeed, it is not possible that one of the falsified literal in C2 was propagated
after ℓ. Literals that may be propagated after ℓ all have a reason that was in κ. Furthermore,
if a literal ℓ′ is in a clause C ∈ κ, then no clause in κ can contain ¬ℓ′ (all clauses in κ were
conflicting with the same assignment π). Therefore, flipping the polarity of one literal in
C ∈ κ cannot falsify a literal in another clause in κ. The order of literals propagated by the
procedure does not matter, and the reason and level for ℓ can be changed without further
modification to the assignment. The re-implication queue ρ is not needed here.

Literal propagation. In this new algorithm, we separate the literal propagation from the
BCP procedure to avoid code duplication and improve readability. In PropagateLiteral(ℓ,
sink), the SAT solver checks all the clauses watched by the literal ℓ and searches for unit
clauses, conflicts and missed lower implications. This method is presented in Alg. 16. In
addition to the standard propagation procedure, the algorithm takes a Boolean argument
sink. If sink is true, then literals added to ω are sunk to the end of their level in π. This is
used to restore the order of the partial assignment during re-implication. SinkLiteral(ℓ) is
presented in Alg. 12. If sink is true, then the partial assignment is assumed to be ordered
by level. When adding the literal c2, we need to restore this property.

As explained earlier, Prop. literal ordering makes it very easy to check for conflicts, unit
clauses and missed lower implication. However, each clause must first restore the property
before it can be checked. It seems like an expensive work, however, it is actually similar
to the procedure called to replace the falsified watched literal in the clause. Despite being
similar to the literal replacement step in NCB, a few factors make it more expensive: (1) Both
watched literals can be modified by RestoreLiteralOrder(C), but the propagation only

54

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Algorithm 15 Conflict handling with Chronological Backtracking

1: procedure RepairConflict()
2: C ← LowestConflict(κ) ▷ Get the lowest conflict in κ
3: if δ(C) = 0 then ▷ Conflict at level 0
4: return ⊥
5: if C has more than one literal at level δ(C) then
6: Backtrack(δ(C)) ▷ Clean π such that conflict analysis is sim-

pler
7: κ← κ ∪Analyze(C)

8: Backtrack(δ(C)− 1)
9: for C ′ ∈ κ do ▷ Search all unit clauses for propagation

10: RestoreLiteralOrder(C ′) ▷ c′1 cannot be falsified
11: c′1 ← the first watched literal of C ′

12: c′2 ← the second watched literal of C ′

13: if c1 ∈ π then
14: if ¬c′2 ∈ π ∧ δ(c′1) > δ(c′2) then ▷ Missed lower implication
15: δ(c′1)← δ(c′2)
16: SetReason(c′1, C

′)

17: else if ¬c′2 ∈ π then ▷ Unit clause
18: δ(c′1)← δ(C \ {c′1})
19: SetReason(c′1, C

′)
20: ω ← ω ∪ {c′1}
21: π ← π ∪ {c′1}
22: return ⊤

knows the location of the clause in one of the watch lists. Therefore, the other may need to
be searched for. (2) The procedure must reason over the levels of literals in the clause. This
is more expensive than simply checking the assignment of the literal. However, this is still a
constant time operation, the coefficient is a bit higher nonetheless. (3) The procedure stops
to enumerate literals in the clause when a satisfactory literal pair (c1, c2) is found (to satisfy
Prop. literal ordering). This requires to look at more literals in the clause than finding a
non-falsified literal. One idea for future work to mitigate this cost would be to let the clause
in the replaced literal’s watch list until it is read. When iterating over clauses in the watch
list of ℓ, if neither watched literal is ℓ, then skip the clause. This will naturally remove it
from the watch list without need to search for it. This idea is not implemented in veriT yet.

BCP. The BCP procedure must now be modified to take into account the re-implication.
Rather than returning a single conflict, the conflicts detected by PropagateLiteral(ℓ,
sink) are stored in κ and handled by RepairConflict(). After propagating a literal, BCP
attempts to resolve any missed lower implication by running ReImply(). The new BCP is
presented in Alg. 17. During BCP, there is no need to sink literals popped from ω. The order
of literals on the stack respects the topological order of the implication graph by construction,
and the level ordering is not important here.

55

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Algorithm 16 Literal propagation with missed lower implications and literal sinking

1: procedure PropagateLiteral(ℓ, sink)
2: for C in watched clauses of ¬ℓ do
3: RestoreLiteralOrder(C)
4: c1 ← first watched literal of C
5: c2 ← second watched literal of C
6: if ¬c1 ∈ π then ▷ Conflict
7: κ← κ ∪ {C}
8: else if c1 ∈ π then ▷ Unisat clause
9: if ¬c2 ∈ π ∧ δ(c1) > δ(c2) then ▷ Missed lower implication

10: ρ← ρ ∪ {C}
11: else if ¬c2 ∈ π then ▷ Unit clause
12: δ(c1)← δ(C \ {c1})
13: SetReason(c1, C)
14: ω ← ω ∪ {c2}
15: π ← π ∪ {c2}
16: if sink then
17: SinkLiteral(c2) ▷ Preserve the ordering

Algorithm 17 BCP with missed lower implication and trail reordering

1: procedure BCP()
2: while ω ̸= ∅ do
3: ℓ← First(ω)
4: PropagateLiteral(ℓ, false)
5: if ρ ̸= ∅ then
6: ReImply()

7: if κ ̸= ∅ then
8: return
9: ω ← ω \ {ℓ}

Re-implication. The re-implication procedure described in Alg. 18 is similar to the one
described by [21]. However, it was adapted to match our data structures and reordering
aspects that they did not need to consider because of their doubly linked list structure.
The first step is to reorder the assignment. Indeed, since the reason of literals is going to
change, we need to ensure some order to find cheaply where the re-implied literal has to be
moved. Furthermore, it is possible that simply moving one literal is not enough to restore
Inv. topological consistency . For example, the implication graph shown on Fig. 4.3.1 cannot
restore the topological order by moving c only. This is why the first step of re-implication
is to order the trail by level. This is done by the method OrderAssignment(). Then, the
re-implication queue is progressively emptied by re-implying the necessary literals. Once a
literal is re-implied, it must be sunk, then propagated again, enabling the sink option. This
ensures that the level ordering of the assignment is still enforced even if propagation implies
new literals on ω.

If the re-implied literal ℓ was a decision, then the LevelCollapse(δ(ℓ)) procedure is called.

56

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

a b c d ee

(a) Initial implication graph

a b c d ee

(b) Implication graph after re-implying c with the reason c∨¬a∨¬e. The blue edges replace the
red one. It is not possible to recover a topological order by moving c only.

Figure 4.3.1: Reordering the assignment is necessary to preserve the topological order.

The literal is no longer a decision and all the literals above must be re-implied after the
decisions at level δ have been re-assigned at level δ − 1. This process can be made more
efficient by directly subtracting one level to all the literals above δ(ℓ), and then re-implying
ℓ. Some literals will not require further re-implication.

Re-implication at work. A lengthy example of execution of the re-implication procedure
is shown in Figs. 4.3.2 and 4.3.3. For the sake of readability, we write that the re-implication
queue contains literals, when it really contains clauses. When the re-implication queue con-
tains a clause C that implies ℓ at a lower level, we write that ℓ ∈ ρ. This abuse of notation
allows to more concisely describe the example.

While propagating v4, the clauses v10∨¬v4∨¬v5 and v14∨¬v4∨¬v2 were looked at. They are
both missed lower implications and ρ = {v14, v10}. The re-implication procedure is triggered,
and the assignment is reordered. v10 is re-implied at level 3. Since it was a decision, all
the literals of level 5 are collapsed to level 4. The re-propagation of v10 detects that ¬v15
and v11 can be re-implied at level 3 too. At this stage, the re-implication queue ρ contains
reasons for {v14,¬v15, v11}. When re-implying v11, two interesting behaviors occur: (1) v11
was in the propagation queue; re-implying it effectively propagates it. Therefore, it can be
removed from ω. (2) ¬v15 is detected as a missed lower implication once again. Another
reason for ¬v15 is pushed to ρ. ρ = {v14,¬v15,¬v15} with two different reasons for ¬v15.
This is why on Fig. 4.3.3b, the reason for ¬v15 is different from before, while the previous
reason was also a valid clause for re-implication. When the re-implication procedure meets
another reason for ¬v15, it is not re-implied again since the clause no longer represents a
missed lower implication. Finally, v14 is re-implied, collapsing level 4 since it was a decision.
The re-implication queue is empty and the procedure terminates.

As can be seen in the example, the procedure could have been faster if both decisions were
collapsed and re-implied before the other literals. This might be an interesting optimization
to consider in the future.

57

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

v
2
0 ∨

v
1

v20

¬
v
1
9 ∨
¬
v
2
0

¬v19

¬
v
6 ∨

v
1
9 ∨

v
1

¬v6

d
ecision

δ = 2

¬v16

v
1
7 ∨

v
1
6 ∨
¬
v
2
0

v17

¬
v
8 ∨
¬
v
1
7 ∨

v
1
6

¬v8

¬
v
7 ∨

v
8 ∨

v
1
6

¬v7

¬
v
1
8 ∨

v
8 ∨

v
1
6

¬v18

v
3 ∨

v
7 ∨

v
1

v3

v
5 ∨

v
7 ∨
¬
v
1
7

v5

d
ecision

δ = 3

v2

d
ecisio

n

δ = 4

v14

¬
v
1
3 ∨

¬
v
1
4 ∨
¬
v
1
7

¬v13

d
ecisio

n

δ = 5

v10

¬
v
1
5 ∨

¬
v
1
0 ∨
¬
v
5

¬v15
v
4 ∨

¬
v
2 ∨
¬
v
2
0

v4

¬
v
1
2
∨
¬
v
4 ∨

v
7

¬v12

v
1
1
∨
¬
v
1
0 ∨
¬
v
4

v11

(a) Trail before re-implication. The re-implication queue ρ contains new reasons for {v14, v10}.

d
ecision

δ = 1

¬v1

v
2
0 ∨

v
1

v20

¬
v
1
9 ∨
¬
v
2
0

¬v19

¬
v
6 ∨

v
1
9 ∨

v
1

¬v6
d
ecision

δ = 2

¬v16
v
1
7 ∨

v
1
6 ∨
¬
v
2
0

v17

¬
v
8 ∨
¬
v
1
7 ∨

v
1
6

¬v8

¬
v
7 ∨

v
8 ∨

v
1
6

¬v7

¬
v
1
8 ∨

v
8 ∨

v
1
6

¬v18

v
3 ∨

v
7 ∨

v
1

v3

v
5 ∨

v
7 ∨
¬
v
1
7

v5

d
ecisio

n

δ = 3

v2

v
4 ∨

¬
v
2 ∨
¬
v
2
0

v4

¬
v
1
2
∨
¬
v
4 ∨

v
7

¬v12

d
ecision

δ = 4

v14

¬
v
1
3 ∨

¬
v
1
4 ∨
¬
v
1
7

¬v13

d
ecision

v10

¬
v
1
5 ∨

¬
v
1
0 ∨
¬
v
5

¬v15

v
1
1
∨
¬
v
1
0 ∨
¬
v
4

v11

collapse

sink

(b) Trail after reordering. v10 is waiting to be re-implied, collapsing level 5 to level 4. When
re-implying v10, v15 and ¬v11 are detected to be a missed lower implication. ρ = {v14,¬v15, v11}.

d
ecision

δ = 1

¬v1

v
2
0 ∨

v
1

v20

¬
v
1
9 ∨
¬
v
2
0

¬v19

¬
v
6 ∨

v
1
9 ∨

v
1

¬v6

d
ecision

δ = 2

¬v16

v
1
7 ∨

v
1
6 ∨
¬
v
2
0

v17

¬
v
8 ∨
¬
v
1
7 ∨

v
1
6

¬v8

¬
v
7 ∨

v
8 ∨

v
1
6

¬v7

¬
v
1
8 ∨

v
8 ∨

v
1
6

¬v18

v
3 ∨

v
7 ∨

v
1

v3

v
5 ∨

v
7 ∨
¬
v
1
7

v5

d
ecisio

n

δ = 3

v2

v
4 ∨

¬
v
2 ∨
¬
v
2
0

v4

¬
v
1
2
∨
¬
v
4 ∨

v
7

¬v12

v
1
0 ∨
¬
v
4 ∨
¬
v
5

v10

d
ecisio

n

δ = 4

v14

¬
v
1
3 ∨

¬
v
1
4 ∨
¬
v
1
7

¬v13

¬
v
1
5 ∨
¬
v
1
0 ∨
¬
v
5

¬v15

v
1
1
∨
¬
v
1
0 ∨
¬
v
4

v11

sink

(c) After re-implication of v10, v11 is re-implied. v11 was in the propagation queue, but was
propagated during the re-implication. v11 can be removed from ω. ρ = {v14,¬v15,¬v15}.

Figure 4.3.2: Example of re-implication: Part 1 (from problem uf20-0083.cnf).

58

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

d
ecision

δ = 1

¬v1

v
2
0 ∨

v
1

v20

¬
v
1
9 ∨
¬
v
2
0

¬v19

¬
v
6 ∨

v
1
9 ∨

v
1

¬v6

d
ecision

δ = 2

¬v16

v
1
7 ∨

v
1
6 ∨
¬
v
2
0

v17

¬
v
8 ∨
¬
v
1
7 ∨

v
1
6

¬v8

¬
v
7 ∨

v
8 ∨

v
1
6

¬v7

¬
v
1
8 ∨

v
8 ∨

v
1
6

¬v18

v
3 ∨

v
7 ∨

v
1

v3

v
5 ∨

v
7 ∨
¬
v
1
7

v5

d
ecisio

n

δ = 3

v2

v
4 ∨

¬
v
2 ∨
¬
v
2
0

v4

¬
v
1
2
∨
¬
v
4 ∨

v
7

¬v12
v
1
0 ∨
¬
v
4 ∨
¬
v
5

v10

v
1
1 ∨
¬
v
1
0 ∨
¬
v
4

v11

d
ecision

δ = 4

v14

¬
v
1
3 ∨

¬
v
1
4 ∨
¬
v
1
7

¬v13

¬
v
1
5 ∨
¬
v
1
0 ∨
¬
v
5

¬v15

sink

(a) After the re-implication of v11, ¬v15 is re-implied. ρ = {v14}

d
ecision

δ = 1

¬v1

v
2
0 ∨

v
1

v20

¬
v
1
9 ∨
¬
v
2
0

¬v19

¬
v
6 ∨

v
1
9 ∨

v
1

¬v6
d
ecision

δ = 2

¬v16
v
1
7 ∨

v
1
6 ∨
¬
v
2
0

v17

¬
v
8 ∨
¬
v
1
7 ∨

v
1
6

¬v8

¬
v
7 ∨

v
8 ∨

v
1
6

¬v7

¬
v
1
8 ∨

v
8 ∨

v
1
6

¬v18

v
3 ∨

v
7 ∨

v
1

v3

v
5 ∨

v
7 ∨
¬
v
1
7

v5

d
ecisio

n

δ = 3

v2

v
4 ∨

¬
v
2 ∨
¬
v
2
0

v4

¬
v
1
2
∨
¬
v
4 ∨

v
7

¬v12

v
1
0 ∨
¬
v
4 ∨
¬
v
5

v10

v
1
1 ∨
¬
v
1
0 ∨
¬
v
4

v11

¬
v
1
5 ∨
¬
v
1
1 ∨

v
1

¬v15

d
ecision

v14

¬
v
1
3 ∨

¬
v
1
4 ∨
¬
v
1
7

¬v13

collapse

(b) Finally, v14 is re-implied and level 4 is collapsed. ρ = ∅.

d
ecision

δ = 1

¬v1

v
2
0 ∨

v
1

v20

¬
v
1
9 ∨
¬
v
2
0

¬v19

¬
v
6 ∨

v
1
9 ∨

v
1

¬v6

d
ecision

δ = 2

¬v16

v
1
7 ∨

v
1
6 ∨
¬
v
2
0

v17

¬
v
8 ∨
¬
v
1
7 ∨

v
1
6

¬v8

¬
v
7 ∨

v
8 ∨

v
1
6

¬v7

¬
v
1
8 ∨

v
8 ∨

v
1
6

¬v18

v
3 ∨

v
7 ∨

v
1

v3

v
5 ∨

v
7 ∨
¬
v
1
7

v5

d
ecisio

n

δ = 3

v2

v
4 ∨

¬
v
2 ∨
¬
v
2
0

v4

¬
v
1
2
∨
¬
v
4 ∨

v
7

¬v12

v
1
0 ∨
¬
v
4 ∨
¬
v
5

v10

v
1
1 ∨
¬
v
1
0 ∨
¬
v
4

v11

¬
v
1
5 ∨
¬
v
1
1 ∨

v
1

¬v15

v
1
4 ∨
¬
v
4 ∨

¬
v
2

v14

¬
v
1
3 ∨
¬
v
1
4 ∨
¬
v
1
7

¬v13

(c) Re-implication is finished.

Figure 4.3.3: Example of re-implication: Part 2 (from problem uf20-0083.cnf).

59

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Algorithm 18 Reimplying literals

1: procedure Reimply()
2: ReorderAssignment()
3: while ρ ̸= ∅ do
4: C ← Pop(ρ) ▷ We know that C is unisat
5: RestoreLiteralOrder(C)
6: c1 ← first watched literal of C ▷ Uniquely satisfied literal
7: c2 ← second watched literal in C ▷ Highest falsified literal
8: if δ(c1) ≤ δ(c2) then ▷ The clause is not a missed lower implica-

tion anymore
9: continue

10: δ ← δ(c1) ▷ Remember to collapse the level if neces-
sary

11: δ(c1)← δ(c2)
12: SetReason(c1, C)
13: SinkLiteral(c1)
14: if c1 ∈ ω then
15: ω ← ω \ {c1} ▷ No need to propagate it twice.

16: PropagateLiteral(c1, true)
17: if c1 ∈ πd then ▷ Decision literal
18: πd ← πd \ {c1}
19: LevelCollapse(δ)

Conflict analysis. Because of the reordering procedure, we have ensured that the trail
remains in a topological order of the implication graph. However, it is still possible to have
an interleaving of levels in the trail π. Therefore, conflict analysis must skip literals at lower
levels. This small change is illustrated in Alg. 19. The conflict analysis procedure is otherwise
unchanged. This modification is necessary regardless of the re-implication procedure. If no
re-implication is performed, then the trail possibly still has interleaving of levels.

Purge. As a bonus, the assumption that watched literals cannot be falsified at level 0 unless
the clause is conflicting at level 0 is restored. Therefore, the bug in the purge from veriT

provoked by the conversion to CB was fixed naturally.

60

2023 Robin Coutelier Chapter 4. Chronological Backtracking in veriT

Algorithm 19 Conflict analysis with Chronological Backtracking

1: procedure Analyze(C)
2: trail ← π ▷ trail the array version of π
3: C ′ ← C ▷ C ′ is the current learned clause
4: n← the number of literals in C at δ(τ)
5: i← |trail| − 1 ▷ i is the index of the last literal in trail

6: while n > 1 do
7: while δ(trail[i]) < δ(C) ∨ ¬trail[i] /∈ C ′ do ▷

Find the last literal of C in trail

8: i← i− 1

9: C ′ ← C ′ \ {¬trail[i]} ▷ Remove the literal trail[i]
10: n← n− 1
11: C ′ ← GetReason(trail[i]) ▷ Get the clause that implied trail[i]
12: for ℓ ∈ C ′ \ {trail[i]} do
13: C ′ ← C ′ ∪ {ℓ} ▷ Avoid duplicates in practice
14: if δ(ℓ) = δ(τ) then
15: n← n+ 1

16: return C ′

61

Chapter 5

SMT Solving

The satisfiability problem is a major component of many system verification techniques. For
example, checking whether an invariant I(x) holds after a transition T (x,x′) is equivalent
to checking whether the formula [I(x) ∧ T (x,x′)]⇒ I(x′) is valid. By duality, this problem
can be reduced to checking whether the formula I(x) ∧ T (x,x′) ∧ ¬I(x′) is unsatisfiable. A
model of such a formula can be interpreted as a bug instance. In practice, formulas expressed
in real-world applications need a more expressive language than propositional logic. A user
might need to declare non-Boolean variables such as real numbers, integers, arrays, etc. This
is where SMT solvers come into play. Satisfiability Modulo Theories is an extension of SAT
solving improving the expressiveness of formulas by adding useful theories [8]. A definition of
SMT solving is given by [1]: “Satisfiability Modulo Theories (SMT) refers to the problem of
determining whether a first-order formula is satisfiable with respect to some logical theory.”

In this chapter, we briefly introduce the SMT problem, and discuss how it shapes the in-
terface of the SAT solver running within the SMT solver. We also discuss some changes
that need to be made when the SAT solver is converted to chronological backtracking. This
chapter is mostly oriented towards possible exploration strategies for implementing such a
solver. Unfortunately, an implementation is not yet complete. In the few weeks following the
submission of this thesis, we will, however, implement a flexible CB and NCB SAT solver for
a new project at the University of Liège. This project, led by Pr. Pascal Fontaine, is called
modulariT and aims at creating a modular SMT solver in C++ for research purposes.

Core idea of SMT. Each atom in a FOL formula Φ is assigned a propositional variable v.
Then, the formula Φ is translated into a propositional formula φ and fed to the SAT solver.
The formula φ is often an under constraint propositional formula and has too many models.
Each model of Φ is also a model of φ, but the opposite is not true. The SAT solver then tries
to find a model of φ and return it to the SMT solver. If the SAT solver finds a model of φ,
the SMT solver checks whether it is also a model of the theories Ti in the formula Φ. If it
is, then the SMT solver returns the model to the user. Otherwise, the SMT solver creates a
clause that prevents this propositional model from being found again, and provide it to the
SAT solver. This procedure continues until φ becomes unsatisfiable, or until a model of Φ is
found. In the context of SMT, for readability, we refer to a conflict as a propositional conflict,
and a T -conflict as a conflict with respect to some theory T .

62

2023 Robin Coutelier Chapter 5. SMT Solving

Example 5.0.1. Let us illustrate with a simple example. The only theory T considered here
is equality. The theory reasoner only involves the congruence closure [23] algorithm. The
formula Φ is the following:

Φ ≡ (a = b ∨ ¬P (c)) ∧ (P (f(a)) ∨ ¬P (f(c))) ∧ c = f(c) ∧ P (c) ∧ ¬P (f(b))

We introduce one propositional variable for each atom in Φ:

va=b vP (c) vP (f(a))

vP (f(c)) vc=f(c) vP (f(b))

and the propositional formula φ:

φ ≡
(
va=b ∨ ¬vP (c)

)
∧
(
vP (f(a)) ∨ ¬vP (f(c))

)
∧ vc=f(c) ∧ vP (c) ∧ ¬vP (f(b))

One possible model of φ is π = {va=b,¬vP (f(a)),¬vP (f(b)), vc=f(c), vP (c),¬vP (f(c))}. This
model is returned to the SMT solver. However, there is a T -conflict with the literals c =
f(c) ∧ P (c) ∧ ¬P (f(c)). The clause ¬vc=f(c) ∨ ¬vP (c) ∨ vP (f(c)) is added to φ and the
SAT solver is called again. On the second run, the SAT solver provides the model π =
{va=b, vP (f(a)),¬vP (f(b)), vc=f(c), vP (c), vP (f(c))}. Once again, the solver discovers a T -conflict
with a = b∧P (f(a))∧¬P (f(b)) and adds the clause ¬va=b∨¬vP (f(a))∨vP (f(b)) to φ. The SAT
solver is called again, but is unable to find a model of φ. The SMT solver returns UNSAT.
Indeed, this formula is equivalent to checking that the formula Φ′ is valid.

Φ′ ≡ [(a = b ∨ ¬P (c)) ∧ (P (f(a)) ∨ ¬P (f(c))) ∧ c = f(c) ∧ P (c)]⇒ P (f(b))

Since we have c = f(c) ∧ P (c), we can imply that P (f(c)). Then, we remove falsified literals
from disjunctions in Φ′ and obtain the formula a = b ∧ P (f(a)) ⇒ P (f(b)). This formula is
an instance of the congruence closure axiom for equality on unary predicates (Leibniz’s law).

∀xy. x = y ⇒ (P (x)⇔ P (y))

with the substitution x 7→ f(a) and y 7→ f(b).

5.1 Components of an SMT solver

Fig. 5.1.1 shows the structure of a typical SMT solver. Roughly speaking, the SMT solver
comprises a SAT solver, a theory reasoner and an instantiation module. The SAT solver is
responsible for handling case splits and the Boolean structure of the formula. It finds a model
for the propositional formulation of the FOL formula. Of course checking whether the Boolean
structure of the formula is satisfiable is not enough. The theory reasoner is responsible for
checking whether the model found by the SAT solver is also a model of the theories in the
formula. It filters out unwanted models and constrains the SAT solver to not meet that
conflict again by providing a T -conflicting clause. The theory reasoner and the SAT solver
only handle ground terms (without quantifiers). However, it might sometimes be useful to
have quantified formulas. For example, theory axioms that are not defined by an implemented
theory are added to the formula; they often come with quantifiers. The instantiation module
is responsible for generating ground instances of quantified formulas. After briefly exploring
the impact of CB on the instantiation module, it did not seem to have any obvious dangers.

63

2023 Robin Coutelier Chapter 5. SMT Solving

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Instantiation
module

Instance

Model UNSAT (proof/core)

Figure 5.1.1: Schematic of a typical SMT solver (from [14]).

Therefore, we will not discuss it further but will keep in mind that it might be necessary to
modify it as well in the future.

In this first section, we consider elements from a standard SMT solver whose SAT solver is
based on NCB. Since this work is focused on the SAT part of the solver, we do not insist on
details of each theory, but rather on the interaction between the SAT solver and the theory
reasoner. The next section focuses on the modification that converting the SAT solver to CB
leads to.

5.1.1 SAT Solver

In the following, each procedure from the SAT solver is prefixed with SAT {...}. the mean-
ing of τ, ω, π remain the same as for Chaps. SAT solving, Chronological Backtracking and
Chronological Backtracking in veriT. Although, we assume that when the theory reasoner is
running, literals in π = τ ∪ ω are fully propagated. That is, ω = ∅ and π = τ . Therefore, we
use τ when the order of literals matters, and π when it does not.

Incremental solvers. The SAT solver in the SMT context is often modified to better fit
the incremental nature of the problems it is required to solve. More specifically, when the
theory reasoner discovers a T -conflict in the assignment π, it is not desirable to forget the state
of the SAT solver and start from scratch. To that intent, the SAT solver is made incremental.
That is, it supports the addition of new clauses during its execution. In the Ex. 5.0.1, the
trail of the SAT solver before the conflict might be

τ =
{
vc=f(c), vP (c),¬vP (f(b)), va=b,¬vP (f(a)),¬vP (f(c))

}
64

2023 Robin Coutelier Chapter 5. SMT Solving

with ¬vP (f(a)) a decision. When the T -conflict clause ¬vc=f(c)∨¬vP (c)∨vP (f(c)) is added, the
solver only backtracks the last decision level (that is, ¬vP (f(a)) and ¬vP (f(c))) and the trail
becomes τ =

{
vc=f(c), vP (c),¬vP (f(b)), va=b

}
. Then the SAT solver continues its execution

from there, without needing to propagate again the literals at level 0, and find the model τ ={
vc=f(c), vP (c),¬vP (f(b)), va=b, vP (f(c)), vP (f(a))

}
. In this case, there are no decisions involved,

and when the T -conflict clause ¬va=b ∨ ¬vP (f(a)) ∨ vP (f(b)) is added, the SAT solver returns
UNSAT because it has a conflict at level 0.

Sometimes, the clauses added to the SAT solver do not qualify as UIPs (see Sect. 2.3.3) and
conflict analysis should be triggered before continuing the search. While conflict analysis is not
necessary (even for non UIPs), it is a good way to continue the propagation without needing
to make a decision. The T -conflict was not in the clause set φ before, but is conflicting,
therefore narrowing the search; this is enough to ensure progress of the solver. However, this
new constraint is not always enough to propagate. This is why conflict analysis is triggered
like shown in Alg. 20. This function behaves very much like when a conflict was found inside
the SAT solver. The T -conflict C is added to the clause set φ and must therefore handle C
similarly. However, since the conflict was triggered outside the BCP loop, it does not have
some properties such as having two falsified literals in the propagation queue ω.

Algorithm 20 Add a clause to φ

1: procedure SAT AddClause(C)
2: if C is a unit clause then
3: ℓ← the unassigned literal in C
4: ω ← ω ∪ {ℓ}
5: else if C is conflicting with τ ∪ ω then
6: if δ(C) = 0 then
7: return ⊥
8: if C has only one literal at level δ(C) then
9: ℓ← the literal in C at δ(C)

10: Backtrack(δ(C \ {ℓ}))
11: ω ← ω ∪ {ℓ}
12: else
13: Backtrack(δ(C))
14: C ′ ← Analyze(C)
15: ℓ← the highest literal in C ′

16: Backtrack(δ(C ′ \ {ℓ}))
17: ω ← ω ∪ {ℓ}
18: φ← φ ∪ {C ′}
19: φ← φ ∪ {C}
20: return ⊤

Partial solving. In practice, a T -conflict may be detected before the SAT solver finds a
complete model. It would be a waste to solve a problem with a million variables when the
theory reasoner can find a T -conflict after only a few propagations. Therefore, in practice, the
SMT solver highjacks the CDCL loop and interrupts the search prematurely when a T -conflict
is found. The solving interface of the SAT solver is modified to support these interruptions.

65

2023 Robin Coutelier Chapter 5. SMT Solving

In veriT, the SAT propagate function performs everything that does not require a decision.
That is, it propagates literals using BCP and performs conflict analysis when necessary. This
procedure is shown on Alg. 21.

Algorithm 21 SAT Propagate for SMT solving

1: procedure SAT Propagate
2: while ⊤ do
3: C ← BCP()
4: if C = ⊤ then ▷ No conflict detected
5: return ⊤
6: if δ(C) = 0 then ▷ Conflict without any decision
7: return ⊥
8: C ′ ← Analyze(C)
9: ℓ← the highest literal in C ′

10: Backtrack(δ(C ′ \ {ℓ})) ▷ Backtrack to the second-highest decision
level in C ′

11: ω ← ω ∪ {ℓ}
12: φ← φ ∪ {C ′}

Providing hints. Since the SMT solver does not decompose the SAT search between deci-
sions, it might be a good idea to take advantage of work done by the theory reasoner to find
a conflict. It might be that it did not find a conflict, but found a literal that is T -implied by
the current assignment. In that case, the SMT solver provides a hint to the SAT solver to
guide the search. Hints can be handled in two ways. Either they are considered as decisions,
or they are pushed at the last decision level. In the second case, the SMT solver must be able
to give a reason for the propagation in order for conflict analysis to work. In general, this
is done in a lazy manner. That is, instead of generating the reason directly when providing
the hint, the theory reasoner waits until the SAT solver asks for it. Indeed, it is desirable to
have the smallest possible reason for the propagation, and it can be expensive to compute.
However, by using the lazy approach, it might not be necessary. A literal can be backtracked
without being implicated in a conflict. Therefore, the theory reasoner does not always need
to justify hints. If hints are considered as decisions, there is no need to pay attention to that
detail since conflict analysis never tries to obtain the reason for a decision. Let τh be the set
of hints provided to the SAT solver.

Solving an SMT problem can be summarized as in Alg. 22. The function SMT Solve() is
called by the user and calls the SAT solver. The SAT solver interface with the SMT solver
consists in calls to SAT Propagate, SAT AddClause, SAT Decide and the trail τ .

5.1.2 Theory Reasoner

The theory reasoner is charged of evaluating whether the propositional model is also a model
in some predefined theories. In practice, a set of specific theories Ti is implemented in the
SMT solver and are combined into a larger theory T . This allows for a lot of flexibility in
the design of the SMT solver. Furthermore, it allows to keep the best possible complexity
depending on the user’s needs. For example, if the user only uses linear real arithmetic, there
is no need to use a general non-linear arithmetic reasoner: “You do not pay for what you do

66

2023 Robin Coutelier Chapter 5. SMT Solving

Algorithm 22 Solving an SMT problem

1: Φ← ∅ ▷ The first-order formula to be solved
2: φ← ∅ ▷ The SAT formula to be solved
3: τ ← ∅ ▷ The current assignment
4: ω ← ∅ ▷ The propagation queue
5: procedure SMT Solve(Φ′)
6: Φ← CNF() ▷ Convert Φ′ to CNF
7: V ← {vatom 7→ atom : atom ∈ Φ} ▷ Set of propositional variables to convert Φ

to SAT
8: φ← ConvertToSAT(Φ,V) ▷ Convert Φ to SAT
9: while SAT Propagate() do

10: C ← FindT-Conflict(τ)
11: if C ̸= ⊤ then
12: SAT AddClause(C)
13: continue
14: if ∃ℓ that is T-implied by τ then
15: ℓ← FindT-Implication(τ)
16: ω ← ω ∪ {ℓ}
17: continue
18: ℓ← SAT Decide() ▷ Decide a literal
19: if ℓ = ⊥ then ▷ Every literal has been assigned
20: return τ ▷ SAT
21: ω ← ω ∪ {ℓ}
22: return ⊥ ▷ UNSAT

not use”.

Incrementalism. Because of the considerations about the SAT solver, efficient SMT solvers
usually implement an incremental approach to theory reasoning as well. That is, the theory
reasoner is able to add formulas to the model and update upon the set of formulas it previously
had. When the SAT solver propagates new literals, the theory reasoner only needs to update
its knowledge of the problem with the new literals of the theory. Conversely, it should be able
to backtrack a certain number of literals without losing its full state. Backtracking should be
an inexpensive procedure.

When a T -conflict is detected, the theory reasoner should be able to generate a relatively
small set of literals responsible for the conflict. This clause should be as small as possible
since smaller clauses prune larger portions of the propositional search tree. In addition to
conflict analysis, the theory reasoner should also be able to imply new literals to give as hints
to the SAT solver. Furthermore, it should be able to provide a reason for the propagation of
the literal. It may sometimes be cheaper to imply a literal than to give a small reason for
it. The theory reasoner may use a lazy approach and only provide this reason when asked by
the SAT solver.

Different theories. General-purpose SMT solvers usually implement a wide range of the-
ories, from simple equality reasoner to higher-order theories. The most common theories

67

2023 Robin Coutelier Chapter 5. SMT Solving

include equality, linear and non-linear real or integer arithmetic, arrays, bit vectors, etc. The
specific details of each theory are out of the scope of this work. However, it might be useful
to understand a few concepts to understand what is possible in the context of SMT solving.
The modules implementing these theories are called decision procedures.

A fast incremental algorithm for congruence closure is explained by [23]. The idea is to
maintain a set of congruence classes and merge them when an equality is added to the set. If
a disequality is added, then we check whether the two elements are in the same congruence
class. If they are, then we have a T -conflict.

The decision procedures for linear real arithmetic generally use a simplex algorithm [9] to
check the feasibility of a set of constraints. This algorithm is based on using a set of base
variables to select active (tight) constraints. In a greedy fashion, the algorithm selects a
variable to enter the base and a variable to leave the base. This is done until a feasible
solution is found, or until no pivot can be found. In the latter case, the set of constraints is
unsatisfiable.

The satisfiability of linear integer arithmetic (LIA) is NP-complete and is therefore not as
efficient as linear real arithmetic. Decision procedures for LIA are outside the scope of this
paper but curious readers can find more information in [5].

Combining theories. The general framework for combining decision procedures is SMT is
the Nelson-Oppen combination procedure [28]. The idea is to declare new variables until every
atom is pure in one theory. A pure atom is an atom that contains interpreted function and
predicates from one unique theory. For example, P (g(a) + 1) is not pure, and is replaced by
P (v1), v1 = v2 + 1, v2 = g(a). The first and third atoms are handled by congruence closure,
while the second is handled by linear real arithmetic. Theories communicate through the
equalities and disequalities between variables. Each decision procedure infers new equalities
in turn until a fixed point is reached. If a T -conflict is found, then it is provided to the
SAT solver. Otherwise, the SAT solver continues its search. Some theories such as non-linear
real arithmetic can generate disjunctions of equalities (e.g., v21 = 1 ⇒ (v1 = 1 ∨ v1 = −1)).
In that case, the decision procedure guesses an arrangement until a model is found, or all
arrangements have been tried.

5.1.3 SAT Solver and Theory Reasoner

To achieve incrementalism, both the SAT solver and the theory reasoner keep track of a stack
of literals τ and τ ′. The SAT solver also keeps track of the lowest modification p of the trail τ
since the last synchronization with the theory reasoner. This is done by simply keeping track
of the lowest level that was backtracked during the propagation. When the SAT solver exits
its propagation, the theory reasoner backtracks every literal above p in τ ′, then propagates
the literals above p in τ . Once this is done, we say that the stacks are synchronized (τ = τ ′),
and p← |τ |.

5.2 Chronological Backtracking in SMT

This section briefly discusses the modifications that we considered necessary to the SMT solver
when converting the SAT solver to CB. As explained earlier, these are only considerations and

68

2023 Robin Coutelier Chapter 5. SMT Solving

the implementation is not complete. Therefore, we have no empirical evidence that they will
be efficient or even sufficient. However, this is a good starting point for the implementation
of a CB SMT solver.

Incrementalism. The incremental nature of the SAT solver does not need a lot of mod-
ifications when using CB. Indeed, Alg. 20 already implements the main pitfalls of CB. The
only necessary change would be to backtrack the SAT solver to the highest decision level of
the T -conflict minus one, instead of the second-highest decision level. However, one might
notice that the conflict clause, as opposed to NCB, is not necessary at the highest level in the
trail. Therefore, to ease conflict analysis when necessary, the SAT solver first backtracks to
the highest level of the T -conflict clause.

The added clause is always conflicting and cannot be a missed lower implication. Therefore,
no special case must be considered for missed lower implications. However, we still want to
ensure the fact that the watched literals are backtracked before the others. Therefore, we also
need to impose that the two watched literals are the highest falsified literals in the clause.

Out of order backtracking. In the NCB setting, the trail behaves exactly like a stack.
That is, literals are pushed and popped to and from the tail of the trail. When the solver
backtracks, we are guaranteed that the first literal propagated after backtracking was not in
the trail before. More specifically, we denote by ∆(δ) the position of the first literal at level δ in
the trail τ . When the solver backtracks to level δ, the trail becomes τ ′ ← τ [0, . . . ,∆(δ+1)−1],
the literal pushed at position ∆(δ+1) is guaranteed to not belong to τ since it was conflicting
with τ . Therefore, the SMT solver also backtracks to the literal at position (∆(δ + 1) − 1).
However, in the CB setting, this is no longer the case.

Let us illustrate with the example used to introduce multiple unit conflict. However, for the
simplicity of the explanation, we consider that there is only one conflict as shown on Fig. 5.2.1.
Let us consider that the conflicting clause is a T -conflict added by the theory reasoner (this
was not the case in the real example). The trail was synchronized until literal ¬v2. When
backtracking, the SAT solver set the synchronization threshold p to ∆(4). While technically,
the literal at position ∆(4) is different after backtracking, it was in the trail before. When
possible, it would be desirable to preserve the literals that do not change. For some decision
procedures such as the simplex for linear real arithmetic, removing literals can be done in
any order. Therefore, it would be a waste to remove v17 and ¬v2 just to add them again. In
other theories, known algorithms strongly depend on the ordering of the trail, and there is
no choice and the trail must behave like a stack. Congruence closure is such an algorithm.
Therefore, in these decision procedures, we do not have a choice but to backtrack to the last
literal that did not move in the trail, then propagate again the remainder of the stack. In the
example, this would be ¬v7.
With these considerations in mind, we would like to introduce an additional interface between
the SAT solver and the theory reasoner. This interface would allow considering trail changes
out of order as transactions. A transaction is a pair of sets (π−, π+) where π− contains the
literals that were removed from the partial assignment since the last synchronization, and
π+ are literals that were added to the partial assignment. Note that if a literal has seen its
polarity change from ℓ to ¬ℓ, then ℓ ∈ π− and ¬ℓ ∈ π+. Furthermore, for efficiency reasons, it
is desirable that π+ ∩ π− = ∅. With this new interface, theories that are able to consider the

69

2023 Robin Coutelier Chapter 5. SMT Solving

δ = 1

¬v1
δ = 2

¬v20
δ = 3

¬v19

¬
v
7 ∨

v
1
9 ∨

v
1

¬v7 δ = 4

¬v18

v
1
7 ∨

v
7 ∨

v
1

v17
v
3 ∨

v
1
8 ∨
¬
v
1
7

v3
¬
v
1
3 ∨

v
1
8 ∨
¬
v
1
7

¬v13

¬
v
2 ∨
¬
v
1
7 ∨

v
1

¬v2

¬
v
3 ∨
¬
v
1
7 ∨

v
7

⊥

ω →← τ

∆(1) ∆(2) ∆(3) ∆(4)

δ = 1

¬v1
δ = 2

¬v20
δ = 3

¬v19 ¬v7

¬
v
7 ∨

v
1
9 ∨

v
1

v
1
7 ∨

v
7 ∨

v
1

v17

¬
v
2 ∨
¬
v
1
7 ∨

v
1

¬v2

¬
v
3 ∨
¬
v
1
7 ∨

v
7

¬v3

ω →← τ

∆(1) ∆(2) ∆(3)

∆(4)

Figure 5.2.1: Trail of the SAT solver in chronological backtracking (from uf20-0651.cnf).
When backtracking, the synchronization threshold π = ∆(4). However, the literal at position
∆(4) was in the trail before, it was just moved. Note that the limit between τ and ω was
artificially pushed compared to Fig. 4.2.1 to simulate that the conflict clause is a T -conflict.

70

2023 Robin Coutelier Chapter 5. SMT Solving

partial assignment as an unordered set of literals can simply ignore literals that were moved
around in the trail. Theories that require the trail to behave like a stack keep functioning as
before.

Trail reordering. Because of the heavy changes on the trail order due to the missed lower
implication procedure described in the previous chapter, it seems that the cost of such a
modification to the algorithm is significant in SMT. This is why, in future work, we will try
to find an alternative solution that does not require the trail to keep the topological order.
More specifically, we will intend to find an alternative solution for conflict analysis. It might
be worth building a topological order on the last level of the trail before performing conflict
analysis. Or keep track of a topologically ordered trail in parallel with a chronologically
ordered trail for conflict analysis and communication with the SMT module respectively. Both
solutions will necessarily hurt the performance of the SAT solver, but may have advantages
in the SMT context.

Remark 5.2.1. Note that the reordering issue is independent of the data structures used. No
matter if we use doubly linked lists like [21] or a standard array, a change in the trail ordering
will always be an issue in SMT. Simulating a stack will always require to perform much more
work than necessary. Therefore, the reordering issue is not a data structure issue, but rather
an algorithmic issue.

Hints

The introduction of hints does not seem to require a lot of modifications to the SAT solver’s
behavior when converting the solver to CB and remain sound. Indeed, if hints are added to
the trail as a decision would, then its reason must be contained in the levels below. And if
the hint is set at level δ(τ), this property still holds. It is however possible that the hint is
a T -missed lower implication. That is, it is propagated at level δ(τ) while the T -reason for
the implication is lower. However, due to the lazy approach of veriT, this is not detectable
directly. The missed lower implication might be discovered when the hint is asked to be
explained by the theory reasoner. In which case, it means that the hint is at level δ(C) where
C is a (T -)conflict. Therefore, the hint will be backtracked anyway.

Despite the fact that it is not necessary to treat hints as missed lower implications, it might
be useful to discover it when conflict analysis is triggered. When the hint is being explained
by the theory reasoner, quickly realizing the hint is actually still valid after backtracking
might be useful. Indeed, instead of backtracking it, the SAT solver, now aware of the T -
reason for the hint might be able to imply it a lower level. Otherwise, the theory reasoner
may need to imply the hint multiple times. Furthermore, when realizing that the hint is a
missed lower implication, it does not need to be justified by the first UIP procedure, since it
in facts belongs to a lower level, therefore reducing the length of learned clauses. Deciding
whether the T -reason is added to the clause set φ or not is an engineering aspect that should
be explored when the implementation of the modulariT SAT solver starts.

71

2023 Robin Coutelier Chapter 5. SMT Solving

5.3 Status of the Implementation in veriT

While we tried to integrate the newly chronological backtracking SAT solver into veriT, a
soundness bug has been detected but not yet identified. This is the reason why this chapter is
mostly theoretical. As yet, we do not have empirical evidence that the modifications discussed
earlier are sufficient or if another aspect of the solver needs to be modified. It might be that
the bug in veriT is just an implementation detail, or it could be something more fundamental.
veriT being a large code base, we were not able to perform thorough checking like for the
standalone SAT solver. When running the problem putting veriT at fault, the SAT solver
keeps behaving normally and respects the invariants discussed earlier. Which gives us strong
confidence in believing that the problem lies in the communication between the SAT solver
and the theory reasoner. However, we were required to pause the bug hunt and focus on the
redaction of this document.

72

Chapter 6

Conclusion and Future Work

In this thesis, we have discussed the problem of propositional satisfiability, and explained the
two main approaches to solving them: DPLL and CDCL. In standard CDCL, the backtracking
mechanism called non-chronological backtracking is the dominating strategy. This method
ensures that the algorithms follow a set of clean invariants that guarantee soundness and
completeness. However, in the past few years, some researchers in the SAT community
started advocating for the introduction of chronological backtracking. This new strategy uses
a less aggressive backtracking method but comes with some complications to maintain the
core invariants of CDCL. We discussed thoroughly what this seemly small change brings to
the table. We implemented the change in the SAT solver of veriT. While the results show
that the new implementation is functional and sound, preliminary benchmarks do not show
any improvements when using missed lower implications in the context of SAT solving alone.
After examining the changes necessary to the SAT solver, we briefly discussed what it entails
in the context of SMT. From a first study, it seems that the modifications to keep soundness
should not be too heavy on the SMT side provided that the SAT solver preserves some
properties. We suggest a set of modifications to both the SAT solver and theory reasoner to
take advantage of the new technique while minimizing drawbacks. However, the SMT solver
veriT was not yet fully adapted to support CB. Further improvements may be more research
heavy, but it is what makes this problem interesting.

Future work. As previously discussed, in the few weeks following the submission of this
document, we will work on a SAT solver from scratch that will support both CB and NCB
frameworks. This project follows the line of libraries that are currently being developed in a
brand new modular SMT solver: modulariT. In addition to re-implementing the algorithms
discussed in Chap. Chronological Backtracking in veriT, we will work on a new conflict
analysis algorithm that does not require a complete reordering of the trail. We will also try
to implement an efficient transaction interface to the SAT solver that will allow the SMT
solver to consider the partial assignment as an unordered set. In addition, we are going to
search for more efficient ways to enforce Prop. literal ordering which seems to be a bottleneck
of the current implementation. Finally, we intend on performing thorough benchmarking to
compare the performance of the different algorithms and ideas.

73

Bibliography

[1] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking. Springer, 2018.

[2] Nikolaj S. Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. Program verifica-
tion as satisfiability modulo theories. In Pascal Fontaine and Amit Goel, editors, 10th
International Workshop on Satisfiability Modulo Theories, SMT 2012, Manchester, UK,
June 30 - July 1, 2012, volume 20 of EPiC Series in Computing, pages 3–11. EasyChair,
2012.

[3] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and Christoph Weiden-
bach. A verified SAT solver framework with learn, forget, restart, and incrementality. J.
Autom. Reason., 61(1-4):333–365, 2018.

[4] Thomas Bouton, Diego Caminha Barbosa De Oliveira, David Déharbe, and Pascal
Fontaine. veriT: An open, trustable and efficient SMT-solver. In Renate A. Schmidt,
editor, Automated Deduction - CADE-22, 22nd International Conference on Automated
Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture
Notes in Computer Science, pages 151–156. Springer, 2009.

[5] Martin Bromberger. Decision Procedures for Linear Arithmetic. (Quelques procédures
de décision pour l’arithmétique linéaire). PhD thesis, Saarland University, Saarbrücken,
Germany, 2019.

[6] Robin Coutelier, Laura Kovács, Michael Rawson, and Jakob Rath. SAT-based subsump-
tion resolution. In Brigitte Pientka and Cesare Tinelli, editors, Automated Deduction -
CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy, July
1-4, 2023, Proceedings, volume 14132 of Lecture Notes in Computer Science, pages 190–
206. Springer, 2023.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J.
ACM, 7(3):201–215, 1960.

[8] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer, 2008.

74

2023 Robin Coutelier Chapter 6. BIBLIOGRAPHY

[9] Diego Caminha Barbosa De Oliveira and David Monniaux. Experiments on the feasibility
of using a floating-point simplex in an SMT solver. In PAAR@ IJCAR, pages 19–28,
2012.

[10] David Déharbe, Pascal Fontaine, Daniel Le Berre, and Bertrand Mazure. Computing
prime implicants. In Formal Methods in Computer-Aided Design, FMCAD 2013, Port-
land, OR, USA, October 20-23, 2013, pages 46–52. IEEE, 2013.

[11] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th
International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003
Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–
518. Springer, 2003.

[12] Mathias Fleury. Optimizing a verified SAT solver. In Julia M. Badger and Kristin Yvonne
Rozier, editors, NASA Formal Methods - 11th International Symposium, NFM 2019,
Houston, TX, USA, May 7-9, 2019, Proceedings, volume 11460 of Lecture Notes in Com-
puter Science, pages 148–165. Springer, 2019.

[13] Pascal Fontaine. Logic for computer science, 2021.

[14] Pascal Fontaine and Bernard Boigelot. Introduction to computer systems verification,
2023.

[15] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning
can effectively p-simulate general propositional resolution. In Dieter Fox and Carla P.
Gomes, editors, Proceedings of the Twenty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 283–290. AAAI
Press, 2008.

[16] Holger H Hoos and Thomas Stützle. SATLIB: An online resource for research on SAT.
Sat, 2000:283–292, 2000.

[17] Michail G. Lagoudakis and Michael L. Littman. Learning to select branching rules in
the DPLL procedure for satisfiability. Electron. Notes Discret. Math., 9:344–359, 2001.

[18] Paolo Liberatore. On the complexity of choosing the branching literal in DPLL. Artif.
Intell., 116(1-2):315–326, 2000.

[19] Sibylle Möhle and Armin Biere. Backing backtracking. In Mikolás Janota and Inês Lynce,
editors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of
Lecture Notes in Computer Science, pages 250–266. Springer, 2019.

[20] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–
535. ACM, 2001.

[21] Alexander Nadel. Introducing intel(r) SAT solver. In Kuldeep S. Meel and Ofer Strich-
man, editors, 25th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 8:1–
8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

75

2023 Robin Coutelier Chapter 6. BIBLIOGRAPHY

[22] Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Olaf Beyersdorff
and Christoph M.Wintersteiger, editors, Theory and Applications of Satisfiability Testing
- SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929
of Lecture Notes in Computer Science, pages 111–121. Springer, 2018.

[23] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27(2):356–364, 1980.

[24] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[25] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form transla-
tion. J. Symb. Comput., 2(3):293–304, 1986.

[26] Jakob Rath, Armin Biere, and Laura Kovács. First-order subsumption via SAT solving.
In Alberto Griggio and Neha Rungta, editors, 22nd Formal Methods in Computer-Aided
Design, FMCAD 2022, Trento, Italy, October 17-21, 2022, pages 160–169. IEEE, 2022.

[27] Cesare Tinelli. SMT-based model checking. In NASA Formal Methods, page 1, 2012.

[28] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the {Nelson-Oppen}
combination procedure. In Franz Baader and Klaus U. Schulz, editors, Frontiers of
Combining Systems, First International Workshop FroCoS 1996, Munich, Germany,
March 26-29, 1996, Proceedings, volume 3 of Applied Logic Series, pages 103–119. Kluwer
Academic Publishers, 1996.

[29] Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation
of reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

76

	Background Knowledge
	Logic Notations
	Propositional Resolution Rule

	SAT Solving
	Boolean Satisfiability Problem
	DPLL Algorithm
	Boolean Constraint Propagation
	Search
	Soundness, Completeness and Complexity
	Discussion of the DPLL Algorithm

	CDCL Algorithm
	CDCL Algorithm Overview
	Boolean Constraint Propagation
	Conflict Analysis
	Learning and Backtracking
	Decision
	Purging Clauses
	Soundness and Complete
	Advantage over DPLL

	Chronological Backtracking
	Motivation
	Modifications on the CDCL Algorithm
	Backtracking
	Broken Invariants

	Missed Lower Implications

	Chronological Backtracking in veriT
	Weak Chronological Backtracking
	Greedy Conflict Resolution
	Watched Literals
	Blockers
	Purge

	Strong Chronological Backtracking
	Backtracking
	Multiple Unit Clauses
	Missed Lower Implications
	Topological Consistency

	Complete Algorithm

	SMT Solving
	Components of an SMT solver
	SAT Solver
	Theory Reasoner
	SAT Solver and Theory Reasoner

	Chronological Backtracking in SMT
	Status of the Implementation in veriT

	Conclusion and Future Work

