Efficient Heuristic for SAT-Based (Variants of) Subsumption
Vampire Workshop 2024

Robin Coutelier !

robin.coutelier@tuwien.ac.at
ITU Wien, Vienna, Austria

01 July 2024

B Informatics yZs

Acknowledgements

Joint work with Jakob Rath, Michael Rawson, Laura Kovacs and Armin Biere.

We thank Pascal Fontaine (University of Liége, Belgium) for fruitful discussions. We acknowledge
partial support from the ERC Consolidator Grant ARTIST 101002685, the FWF SFB project SpyCoDe
F8504, the Austrian FWF project W1255-N23, the WWTF ICT22-007 Grant ForSmart, and the TU
Wien Trustworthy Autonomous Cyber-Physical Systems Doctoral College. This research was funded in
whole or in part by the Austrian Science Fund (FWF) [10.55776/F85, 10.55776/W1255]. For open
access purposes, the author has applied a CC BY public copyright license to any author accepted
manuscript version arising from this submission.

European Research Council LLI F amazon

Established by the European Commission . A
Der Wissenschaftsfonds. Vienna Science web services
and Technology Fund

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Introduction

Related work
@ First-Order Subsumption via SAT solving [Rath et al., 2022],
@ SAT-based Subsumption Resolution [Coutelier et al., 2023],
@ SAT Solving for Variants of First-Order Subsumption [Coutelier et al., 2024].

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Ol

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Saturation in FOL Theorem Proving

Out of memory!)

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption

Definition
A clause S subsumes a distinct clause M iff there is a substitution o such that

o(S)C M
where C is the sub-multiset inclusion relation.)
If S subsumes M, then M is redundant and can be removed from the formula.)

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption - Examples

Example (propositional logic)

S=aVvb
M=aVvVbVc

S subsumes M. It is “stronger” than M.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption - Examples
Example (propositional logic)

S=aVvb
M=aVvVbVc

S subsumes M. It is “stronger” than M.

Example (FOL)

S = plxi, x2) V p(f(x2), x3)
M = —p(f(c),d) v p(f(y),c) vV p(f(c), g(d))

S subsumes M with the substitution o = {x1 > f(y), x> — ¢, x3 — g(d)}.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption - Intuition

ONC) NG

subsumes(S,M)

) &)

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution

Resolution (Simplified)

S*vs —o(s") v M*
o(5%) v M*

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution

Resolution (Simplified)

S*vs —o(s") v M*
o(5%) v M*

Definition
Clauses M and S are said to be the main and side premise of subsumption resolution,
respectively, iff there is a substitution o, a set of literals S’ C S and a literal m’ € M such that

o(S'y={-m'} and o(S\S)C M\ {m'}.

Subsumption Resolution aims to remove a literal from the main premise.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution - Example 1

Example (propositional logic)
S:=[a]vb M:=[-a]VbVc
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the clause set.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution - Example 1

Example (propositional logic)
S:=[a]Vvb M = Ve
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the clause set.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution - Example 2

Example (FOL)

S = p(xa,x) V p(f(x2), x3)
M = =p(f(y),d) v p(g(y).c) vV =p(f(c),e)
o={x1+— g(y),x2— c,x3— e}

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution - Example 2

Example (FOL)

S = p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), c) V =p(f(c), e)
o={x1— g(y),x2— c,x3— e}

p(x1, x2) V p(f(x2), x3)
p(g(y),c) V|p(f(c),e) —p(f(y),d) Vv p(g(y),c) V| =p(f(c),e)
M* .= =p(f(y),d) vV p(g(y),c)

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution - Example 2

Example (FOL)

S = p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), c) V =p(f(c), e)
o={x1— g(y),x2— c,x3— e}

p(x1, x2) V p(f(x2), x3)
p(g(y),c) V|p(f(c),e) —p(f(y),d) v ; =p(f(c),e)
M* = _‘p(T(.y/)’ d) \ p(g(y)’ C)

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Subsumption Resolution - Intuition

IG\EN(ONG

M= SR(S,M)

) &)

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544. §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544. §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30

4918. $ false

% Termination reason: Refutation
% Memory used [KB]: 12025

% Time elapsed: 0.150 s

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Relevance of Speed

Flame Graph

| Indexing.. @

Inferences::ForwardSubsumptionAndResolution::perform
Saturation::SaturationAlgorithm::forwardSimplify

Figure: Typical profiling results for a TPTP problem (GRP001+6).

Efficient Heuristic for SAT-Based (Variants of) Subsumption

SAT-Based Subsumption Resolution

‘ Input (S, M) ‘
)
‘ Prune (S, M) ‘
FAIL | [N = MatchSet (S, M)]
pruned kept
| FAIL Ll e=&x (M) |
1
‘ solver(¢) ‘

un&}/ \%t

| FAIL | [M = Interpret (1) |

‘ return M* ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption

SAT-Based Subsumption Resolution

‘ Input (S, M) ‘
{
| Prune (S, M) |
FAIL | [N = MatchSet (S, M)]
prunV kept
| FAIL Ll e=&x (M) |
{
‘ solver(¢) ‘

S
Il
5
=g
@
<
°
<)
I
+
—_
=
=

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Multi-Step Pruning — (multi-)set check

{(P(s1).Q(s1)) | si € S} E {(P(m;), Q(m})) | mj € M} (1)
Theorem (Pruning Subsumption)
If the pruning criterion (1) is unsat, then S does not subsume M. J

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Multi-Step Pruning — (multi-)set check

{(P(s1), Q(s))) | si € S} E {(P(m)), Q(m))) | m; € M} (1)
Theorem (Pruning Subsumption)

If the pruning criterion (1) is unsat, then S does not subsume M.

{P(s) | s € S} < {P(my) | m; € M} 2)

Theorem (Pruning Subsumption Resolution)

If the pruning criterion (2) is unsat, then S and M are not side and main premises of
subsumption resolution.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Multi-Step Pruning — (multi-)set check

{(P(si),Q(si)) | si € S} E {(P(m;), Q(my)) | mj € M} (1)
Theorem (Pruning Subsumption)

If the pruning criterion (1) is unsat, then S does not subsume M.

{P(S,‘) ‘ S| € 5} - {P(mj) ‘ mj S M} (2)
Theorem

Validity of the subsumption pruning criterion (1) implies validity of the subsumption resolution
pruning criterion (2).

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Previous Implementation

N < number of predicate symbols
procedure pruneSubsumption(S, M)
A < zeros(2 - N)
for me M do

idx <— HEADERINDEX(m)
| Alidx] < max(0, Alidx]) + 1
for s € S do

idx <— HEADERINDEX(s)

if Alidx] <0 then

L return T
| Alidx] < Alidx] — 1
L return |

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Previous Implementation

N < number of predicate symbols
procedure pruneSubsumption(S, M)
A + zeros(2 - N)
for me M do

idx <— HEADERINDEX(m)
| Alidx] < max(0, Alidx]) + 1
for s € S do

idx <— HEADERINDEX(s)

if Alidx] <0 then

L return T
| Alidx] < Alidx] — 1
L return |

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Fast Implementation

N < number of predicate symbols
t < 0, A < zeros(2- N)
procedure pruneSubsumption(S, M)
if t+|M| > UINT_MAX then

| t< 0, A<« zeros(2- N)
for me M do
idx <~ HEADERINDEX(m)
| Alidx] < max(t, Alidx]) + 1
for s€ S do

idx <— HEADERINDEX(s)
if Alidx] <t then

| t<t+|M| return T
| Alidx] < Alidx] — 1
|t t+|[M], return L

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Variance Drop Explanation

Prover

Average Std. Dev. Boost

VAMPIRE
VAMPIRE;
VAMPIRE]

42.63us 1609.06 us 1.00
40.13 s 1554.52pus 1.06
34.55us 250.25us 1.23

Table: Without Pruning Optimization

Prover

Average Std. Dev. Boost

VAMPIRE
VAMPIRE;
VAMPIRE]

33.63 s 1839.25 us 1.00
28.36 us 243.38 us 1.19
2493 s 196.38 s 1.35

Table:

With Pruning Optimization

Efficient Heuristic for SAT-Based (Variants of) Subsumption

SAT-Based Subsumption Resolution

‘ Input (S, M) ‘
)
‘ Prune (S, M) ‘
FAIL | [= MatchSet (5,)]
pruned kept
| FAIL Ll e=&x (M) |
1
‘ solver(¢) ‘

unia// \%t

| FAIL | [M = Interpret (1) |

‘ return M* ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Match Set

Incompatible Substitution

The Incompatible Substitution % is a substitution that is incompatible with all substitutions. If
two literals s; and m; are not unifiable, then Y is the only substitution that can be applied to
s; to make it equal to m;. y y

Z(S;) =m;V Z(S,') = mj

Definition
The match set of S and M is the set of pairs (b?—jj7 Zi) such that b?—;. is a propositional
variables and Z?—LJ is a substitution such that Z?;i(s,-) =mj and X (s;) = ~m;.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Multi-Step Pruning — After Building the Match Set
Vidj. 55 A% (3)
Theorem (Substitution Sets for Pruning Subsumption)

Let (S, M) = {(bfz., Zi)} be the match set of S and M. If (3) is unsat, then S does not
subsume M.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Multi-Step Pruning — After Building the Match Set
Vidj. o #)N (3)

Theorem (Substitution Sets for Pruning Subsumption)

Let (S, M) = {(bffj, Zi)} be the match set of S and M. If (3) is unsat, then S does not
subsume M.

Vidj. S A VE £E (4)
Theorem (Substitution Sets for Pruning Subsumption Resolution)

Let N(S, M) = {(b?—;, ij)} be the match set of S, M. If (4) is unsat, then S and M are not
side and main premises of subsumption resolution.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Multi-Step Pruning — After Building the Match Set

Viii' (i) = (P(si) =Plsi) VI T A2V T #%)

Theorem (Predicate Matches for Pruning Subsumption Resolution)

Let TI(S, M) = {(b,-ljj, Zi)} be the match set of S, M. If (5) is unsat, then S and M are not

side and main premises of subsumption resolution.

(5)

Example

Let S = —p(x) V g(x) and M = p(a) V —q(a). There are two literals in S that only match
negatively to literals in M, with a different predicate. Therefore, subsumption resolution is
impossible.

v

Efficient Heuristic for SAT-Based (Variants of) Subsumption

SAT-Based Subsumption Resolution

- Input (S, M) |
| Prune¢(5, M) |
FAIL | |1 = MatchSet (S, M) |
pruned ept
| FAIL BRSO

‘ solver(¢) ‘

unia// \%t

| FAIL | [M = Interpret (1) |

‘ return M* ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Two Encodings
Indirect Encoding &l (M)
Direct Encoding £& (1)
positive compatibility /\ /\ (bf; =>xhc a)
positive compatibility /\ /\ (bz =):,'.Z- C (r) P
i negative compatibility /\ /\ (bl’d =3 C o‘)
negative compatibility /\ /\ (b,’d =):,’J C a) i
i

Ve structurality A [v vb,-;} MAN (o v -8)
j i joi

. . . revised existence \/ ¢

uniqueness /\/\/\ /\ b \Y, b v j

i i>ij>j

completeness /\v b+ Vb, revised uniqueness AMO({¢j,j = 1,...,|M[})
completeness /\ \/ bJr Vv b;;
coherence /\ /\ /\ ﬂbu vV =by
joi revised coherence /\ /\ (—\cj Vv —\b?'J.)
Joi

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Two Encodings
Indirect Encoding &l (M)
Direct Encoding £&(IT)
positive compatibility /\ /\ (bf; =)foj - a)
positive compatibility /\ /\ (b+ =):;tl C (r) i
! negative compatibility A /\ (b,; =¥ C a)
negative compatibility /\ /\ (b,’d =):,’J C a) i
i

Ve structurality A [v vbg} MAN (o v -8)
j i joi

. . . revised existence \/ ¢

uniqueness /\/\/\ /\ b \Y, b v j

Joiizij>j
completeness /\v b+ Vb, revised uniqueness AMO({¢j,j = 1,...,|M[})
completeness /\ \/ bJr Vv b;;
coherence /\ /\ /\ ﬂbu vV =by
joi revised coherence /\ /\ (—\cj —\b;*'d.)
Jjoi

Complexities

o £ (M) has O(|M|) variables and O(|M|?) clauses.
o EL(M) has O(|M| + |M]) variables and O(|M|) clauses.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Choosing the Encoding

Prune (S, M)

FAIL | [N = MatchSet (S, M)
N
| FAIL | [Choose(s, M) \
| o= || so=gm |

FAIL ‘ ‘ M* = Interpret (/) ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Choosing the Encoding

Prune (S, M)

FAIL | [N = MatchSet (S, M)
pruny wpt
| FAIL | [Choose(s, m.1)
dire‘g/ \\filrect
‘ ¢ = 8§R (M ‘ ¢ = gsn (M ‘

FAIL ‘ ‘ M* = Interpret (/) ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Choosing Features

The features should be
o fast to compute;
@ informative;

@ independent.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Choosing Features

The features should be
o fast to compute;
@ informative;

@ independent.

@ Number of literals of S;
@ Number of literals of M;
© Sparsity of the match set |s|| |,|V,|

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Choosing the Architecture

What do we want?

We want a model that is
o fast to compute;
o generalisable;
@ interpretable;

@ easy to train.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Choosing the Architecture

What do we want?

We want a model that is
o fast to compute;
o generalisable;
@ interpretable;

@ easy to train.

Decision Trees are (almost) perfect
@ can be hard coded in a few lines;
@ not prone to overfitting;

@ can be visualised:;

@ ... but cannot easily be trained online ...

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Big Dataset without Online Learning

Objective function

argminE o Ye(x
FERE i 700

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Big Dataset without Online Learning

Objective function

argminE o Ye(x
FERE i 700

What if the dataset cannot be loaded in memory?

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Big Dataset without Online Learning

Objective function

argminE o Ye(x
R i 100

What if the dataset cannot be loaded in memory?

Revised objective function

We condense de dataset {(x, yo,y1)} into S = {(x, Yo, y1)} where J is the sum of the yp with
the same x and y; is the sum of the y; with the same x. Then we have
. A~ A N A 2
argmin >" [150— 51l + (F(x) = H(o — 1))?]
(x.50,91)€S

with H the step function

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Setting Model Complexity

Advantage over the ideal predictor

1.000 A

0.995

0.990 A

—=—- Baseline indirect

Advantage
o
©
[o2]
wv
)

—— Validation
0.980 -
0.975 -
B s -
2 4 6 8 10 12 12 By

Tree depth

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Final Tree

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Performance of the Simplification Loop

Prover Average Std. Dev. | Boost
VAMPIREp, | 33.63 us 1839.25 us 1.00
VAMPIREp | 28.74 us 1245.88 us 1.17
VAMPIRE; | 28.36 us 243.38 us 1.19
VAMPIREy | 28.16 us 233.87 us 1.19
VAMPIRE}, | 25.38 us 1241.86 us 1.32
VAMPIRE] | 24.93 us 196.38 us 1.35
VAMPIRE}, | 24.73 ps 190.69 us 1.36

Table: Average time spent in the forward simplify loop.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Overfitting?

Not likely!
@ The model is simple;
@ The dataset is large;

@ The feature space is small.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Overfitting?

Not likely!
@ The model is simple;
@ The dataset is large;

@ The feature space is small.

In any case...
We want to solve problems from TPTP, generalisation is not our main goal.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

SAT-Based Subsumption Resolution

Prune (S, M)

FAIL \ \n: MatchSet (S, M)\
mnes” e
| FAIL | [Choose(s, m.M) |
dirs?/ \JQAdirect
| o= || so=gm |

FAIL ‘ ‘ M* = Interpret (/) ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Cutting off Difficult Instances?

Success rate

Iy
o
s

Success Rate
o
w
|

0.0 1
T T T T T T T T T
10° 10t 102 103 104 10° 10° 107 108
Ticks
” Density distribution of tries and successes
[
g 108 —— Total number of instances
z, —— Number of successes
5 10° 4
g 102 4
€
E
P4 T T T T T T T T
10° 10! 10? 10° 104 10° 10° 107 108
Ticks

Success rate of direct SR with respect to difficulty

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Computation Saved

10°
10 \
1072
1073
107*
1054 SAT instances lost
Ticks saved
- cutoff = 150
35.0% ticks saved
0.44% SAT instances lost
- cutoff = 5000
11.0% ticks saved
m 0.012% SAT instances lost
10° 102 10* 10° 108
Cutoff

Computation saved with direct SR with respect to difficulty threshold

Efficient Heuristic for SAT-Based (Variants of) Subsumption

Performance on TPTP

Prover Total Solved Gain/Loss
VAMPIRE 10728 baseline

VAMPIREp 10762 (+62, —28)
VAMPIRE;, 10760 (+63, —31)
VAMPIRE 10764 (+64, —28)
VAMPIRE], 10791 (+94, —31)
VAMPIRE] 10785 (+92, —35)
VAMPIRE}, 10794 (497, —31)
VAMPIRE—cutoff-50007, 10790 (+97, —35)
VAMPIRE—cutoff-1507, 10768 (+93, —53)

Table: Number of TPTP problems solved by the considered versions of VAMPIRE. The run was made
using the options -sa otter -av off with a timeout of 60s. The Gain/Loss column reports the
difference of solved instances compared to VAMPIRE .

Efficient Heuristic for SAT-Based (Variants of) Subsumption

References |

Coutelier, R., Kovéacs, L., Rawson, M., and Rath, J. (2023).

Sat-based subsumption resolution.

In Pientka, B. and Tinelli, C., editors, Automated Deduction - CADE 29 - 29th
International Conference on Automated Deduction, Rome, Italy, July 1-4, 2023,
Proceedings, volume 14132 of Lecture Notes in Computer Science, pages 190-206.
Springer.

Coutelier, R., Rath, J., Rawson, M., and Kovécs, A. B. L. (2024).
Sat solving for variants of first-order subsumption.

Rath, J., Biere, A., and Kovics, L. (2022).

First-order subsumption via SAT solving.

In Griggio, A. and Rungta, N., editors, 22nd Formal Methods in Computer-Aided Design,
FMCAD 2022, Trento, Italy, October 17-21, 2022, pages 160-169. IEEE.

Efficient Heuristic for SAT-Based (Variants of) Subsumption

	Saturation
	Redundancy Elimination
	Subsumption
	Subsumption Resolution

