
Efficient Heuristic for SAT-Based (Variants of) Subsumption
Vampire Workshop 2024

Robin Coutelier 1

robin.coutelier@tuwien.ac.at
1TU Wien, Vienna, Austria

01 July 2024



Acknowledgements

Joint work with Jakob Rath, Michael Rawson, Laura Kovács and Armin Biere.
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Introduction

Related work

First-Order Subsumption via SAT solving [Rath et al., 2022],

SAT-based Subsumption Resolution [Coutelier et al., 2023],

SAT Solving for Variants of First-Order Subsumption [Coutelier et al., 2024].
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Subsumption

Definition

A clause S subsumes a distinct clause M iff there is a substitution σ such that

σ(S) ⊑ M

where ⊑ is the sub-multiset inclusion relation.

If S subsumes M, then M is redundant and can be removed from the formula.
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Subsumption - Examples

Example (propositional logic)

S = a ∨ b

M = a ∨ b ∨ c

S subsumes M. It is “stronger” than M.

Example (FOL)

S = p(x1, x2) ∨ p(f (x2), x3)

M = ¬p(f (c), d) ∨ p(f (y), c) ∨ p(f (c), g(d))

S subsumes M with the substitution σ = {x1 7→ f (y), x2 7→ c , x3 7→ g(d)}.
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Subsumption - Intuition
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Subsumption Resolution

Resolution (Simplified)

S∗ ∨ s ′ ¬σ(s ′) ∨M∗

σ(S∗) ∨M∗

Definition

Clauses M and S are said to be the main and side premise of subsumption resolution,
respectively, iff there is a substitution σ, a set of literals S ′ ⊆ S and a literal m′ ∈ M such that

σ(S ′) = {¬m′} and σ(S \ S ′) ⊆ M \ {m′}.

Subsumption Resolution aims to remove a literal from the main premise.
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Subsumption Resolution - Example 1

Example (propositional logic)

S := a ∨ b M := ¬a ∨ b ∨ c

M∗ := b ∨ c

¬a is the resolution literal. M∗ subsumes M and can replace M in the clause set.
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Subsumption Resolution - Example 2

Example (FOL)

S = p(x1, x2) ∨ p(f (x2), x3)

M = ¬p(f (y), d) ∨ p(g(y), c) ∨ ¬p(f (c), e)
σ = {x1 7→ g(y), x2 7→ c, x3 7→ e}
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Subsumption Resolution - Intuition
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Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

...

132544. $ false

% Termination reason: Refutation

% Memory used [KB]: 308054

% Time elapsed: 6.654 s

------------------------------------------------------------

$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30

...

4918. $ false

% Termination reason: Refutation

% Memory used [KB]: 12025

% Time elapsed: 0.150 s
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Relevance of Speed

Flame Graph Search ic
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Figure: Typical profiling results for a TPTP problem (GRP001+6).
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SAT-Based Subsumption Resolution

Input (S ,M)

Prune (S ,M)

FAIL

yes

Π = MatchSet (S ,M)

no

ϕ = ESR (Π)

kept

FAIL

pruned

solver(ϕ)

FAIL

unsat

M∗ = Interpret (I )

sat

return M∗
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Multi-Step Pruning – (multi-)set check

{(
P(si ),Q(si )

) ∣∣ si ∈ S
}
⊑

{(
P(mj),Q(mj)

) ∣∣ mj ∈ M
}

(1)

Theorem (Pruning Subsumption)

If the pruning criterion (1) is unsat, then S does not subsume M.

{
P(si )

∣∣ si ∈ S
}
⊆

{
P(mj)

∣∣ mj ∈ M
}

(2)
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{
P(si )

∣∣ si ∈ S
}
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{
P(mj)

∣∣ mj ∈ M
}

(2)

Theorem

Validity of the subsumption pruning criterion (1) implies validity of the subsumption resolution
pruning criterion (2).
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Previous Implementation

N ← number of predicate symbols
procedure pruneSubsumption(S ,M)
A ← zeros(2 · N)
for m ∈ M do

idx ← headerIndex(m)
A[idx ]← max(0,A[idx ]) + 1

for s ∈ S do
idx ← headerIndex(s)
if A[idx ] ≤ 0 then

return ⊤
A[idx ]← A[idx ]− 1

return ⊥
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Fast Implementation

N ← number of predicate symbols
t ← 0,A ← zeros(2 · N)
procedure pruneSubsumption(S ,M)

if t + |M| > UINT MAX then
t ← 0, A ← zeros(2 · N)

for m ∈ M do
idx ← headerIndex(m)
A[idx ]← max(t,A[idx ]) + 1

for s ∈ S do
idx ← headerIndex(s)
if A[idx ] ≤ t then

t ← t + |M|, return ⊤
A[idx ]← A[idx ]− 1

t ← t + |M|, return ⊥
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Variance Drop Explanation

Prover Average Std. Dev. Boost
VampireM 42.63µs 1609.06µs 1.00
VampireI 40.13µs 1554.52µs 1.06
Vampire∗I 34.55µs 250.25µs 1.23

Table: Without Pruning Optimization

Prover Average Std. Dev. Boost

VampireM 33.63 µs 1839.25 µs 1.00
VampireI 28.36 µs 243.38 µs 1.19
Vampire∗I 24.93 µs 196.38 µs 1.35

Table: With Pruning Optimization
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SAT-Based Subsumption Resolution

Input (S ,M)

Prune (S ,M)

FAIL

yes

Π = MatchSet (S ,M)

no

ϕ = ESR (Π)

kept

FAIL

pruned

solver(ϕ)

FAIL

unsat

M∗ = Interpret (I )

sat

return M∗
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Match Set

Incompatible Substitution

The Incompatible Substitution Σ̃ is a substitution that is incompatible with all substitutions. If
two literals si and mj are not unifiable, then Σ̃ is the only substitution that can be applied to
si to make it equal to mj .

Σ̃(si ) = mj ∨ Σ̃(si ) = ¬mj

.

Definition

The match set of S and M is the set of pairs
(
b±i ,j ,Σ

±
i ,j

)
such that b±i ,j is a propositional

variables and Σ±
i ,j is a substitution such that Σ+

i ,j(si ) = mj and Σ−
i ,j(si ) = ¬mj .
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Multi-Step Pruning – After Building the Match Set

∀i∃j . Σ+
i ,j ̸= Σ̃ (3)

Theorem (Substitution Sets for Pruning Subsumption)

Let Π(S ,M) =
{(

b±i ,j ,Σ
±
i ,j

)}
be the match set of S and M. If (3) is unsat, then S does not

subsume M.

∀i∃j . Σ+
i ,j ̸= Σ̃ ∨ Σ−

i ,j ̸= Σ̃ (4)

Theorem (Substitution Sets for Pruning Subsumption Resolution)

Let Π(S ,M) =
{(

b±i ,j ,Σ
±
i ,j

)}
be the match set of S ,M. If (4) is unsat, then S and M are not

side and main premises of subsumption resolution.
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Multi-Step Pruning – After Building the Match Set

∀i , i ′. (i ̸= i ′)⇒ (P(si ) = P(si ′) ∨ ∃j Σ+
i ,j ̸= Σ̃ ∨ ∃j Σ+

i ′,j ̸= Σ̃) (5)

Theorem (Predicate Matches for Pruning Subsumption Resolution)

Let Π(S ,M) =
{(

b±i ,j ,Σ
±
i ,j

)}
be the match set of S ,M. If (5) is unsat, then S and M are not

side and main premises of subsumption resolution.

Example

Let S = ¬p(x) ∨ q(x) and M = p(a) ∨ ¬q(a). There are two literals in S that only match
negatively to literals in M, with a different predicate. Therefore, subsumption resolution is
impossible.
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SAT-Based Subsumption Resolution

Input (S ,M)

Prune (S ,M)

FAIL

yes

Π = MatchSet (S ,M)

no

ϕ = ESR (Π)

kept

FAIL

pruned

solver(ϕ)

FAIL

unsat

M∗ = Interpret (I )

sat

return M∗
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Two Encodings
Direct Encoding EdSR(Π)

positive compatibility
∧
i

∧
j

(
b+i ,j ⇒ Σ+

i ,j ⊆ σ
)

negative compatibility
∧
i

∧
j

(
b−i ,j ⇒ Σ−

i ,j ⊆ σ
)

existence
∨
i

∨
j

b−i ,j

uniqueness
∧
j

∧
i

∧
i ′≥i

∧
j ′>j

¬b−i ,j ∨ ¬b
−
i ′,j ′

completeness
∧
i

∨
j

b+i ,j ∨ b−i ,j

coherence
∧
j

∧
i

∧
i ′

¬b+i ,j ∨ ¬b
−
i ′,j

Indirect Encoding E iSR(Π)

positive compatibility
∧
i

∧
j

(
b+i ,j ⇒ Σ+

i ,j ⊆ σ
)

negative compatibility
∧
i

∧
j

(
b−i ,j ⇒ Σ−

i ,j ⊆ σ
)

structurality
∧
j

[
¬cj ∨

∨
i

b−i ,j

]
∧
∧
j

∧
i

(
cj ∨ ¬b−i ,j

)
revised existence

∨
j

cj

revised uniqueness AMO({cj , j = 1, ..., |M|})

completeness
∧
i

∨
j

b+i ,j ∨ b−i ,j

revised coherence
∧
j

∧
i

(
¬cj ∨ ¬b+i ,j

)

Complexities

EdSR(Π) has O(|Π|) variables and O(|Π|2) clauses.
E iSR(Π) has O(|Π|+ |M|) variables and O(|Π|) clauses.
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Choosing the Encoding

Input (S ,M)

Prune (S ,M)

FAIL

yes

Π = MatchSet (S ,M)

no

Choose(S ,M,Π)

kept

FAIL

pruned

ϕ = EdSR (Π)

direct

ϕ = E iSR (Π)

indirect

solver(ϕ)

FAIL

unsat

M∗ = Interpret (I )

sat

return M∗
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Choosing Features

The features should be

fast to compute;

informative;

independent.

1 Number of literals of S ;

2 Number of literals of M;

3 Sparsity of the match set |Π|
|S |·|M| .

Efficient Heuristic for SAT-Based (Variants of) Subsumption 27 / 37



Choosing Features

The features should be

fast to compute;

informative;

independent.

1 Number of literals of S ;

2 Number of literals of M;

3 Sparsity of the match set |Π|
|S |·|M| .

Efficient Heuristic for SAT-Based (Variants of) Subsumption 27 / 37



Choosing the Architecture

What do we want?

We want a model that is

fast to compute;

generalisable;

interpretable;

easy to train.

Decision Trees are (almost) perfect

can be hard coded in a few lines;

not prone to overfitting;

can be visualised;

... but cannot easily be trained online ...
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Big Dataset without Online Learning

Objective function

argmin
f ∈F

E x∼X
(y0,y1)∼D(·|x)

[
yf (x)

]

What if the dataset cannot be loaded in memory?

Revised objective function

We condense de dataset {(x , y0, y1)} into S = {(x , ŷ0, ŷ1)} where ŷ0 is the sum of the y0 with
the same x and ŷ1 is the sum of the y1 with the same x . Then we have

argmin
f ∈F

∑
(x ,ŷ0,ŷ1)∈S

[
|ŷ0 − ŷ1| ∗ (f (x)− H(ŷ0 − ŷ1))

2
]

with H the step function
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|ŷ0 − ŷ1| ∗ (f (x)− H(ŷ0 − ŷ1))
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Setting Model Complexity
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Final Tree

gini = 0.0
samples = 11

value = [0, 241948963690]
class = direct

gini = 0.493
samples = 40

value = [149569426282, 116991548725]
class = indirect

gini = 0.499
samples = 54

value = [1872552013, 1690538781]
class = indirect

gini = 0.01
samples = 628

value = [320092942989, 1669602248]
class = indirect

gini = 0.235
samples = 77

value = [14957260350, 94795959679]
class = direct

gini = 0.013
samples = 2086

value = [567156460708, 3622735285]
class = indirect

gini = 0.018
samples = 216636

value = [5669972037972, 53350726071]
class = indirect

gini = 0.34
samples = 1826

value = [36415912149, 10090521515]
class = indirect

sparsity <= 0.765
gini = 0.415

samples = 51
value = [149569426282, 358940512415]

class = direct

len(main premise) <= 1.5
gini = 0.02

samples = 682
value = [321965495002, 3360141029]

class = indirect

len(side premise) <= 3.5
gini = 0.247

samples = 2163
value = [582113721058, 98418694964]

class = indirect

sparsity <= 1.545
gini = 0.022

samples = 218462
value = [5706387950121, 63441247586]

class = indirect

len(side premise) <= 3.5
gini = 0.491

samples = 733
value = [471534921284, 362300653444]

class = indirect

len(main premise) <= 5.5
gini = 0.049

samples = 220625
value = [6288501671179, 161859942550]

class = indirect

len(main premise) <= 3.5
gini = 0.134

samples = 221358
value = [6760036592463, 524160595994]

class = indirect
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Performance of the Simplification Loop

Prover Average Std. Dev. Boost

VampireM 33.63 µs 1839.25 µs 1.00
VampireD 28.74 µs 1245.88 µs 1.17
VampireI 28.36 µs 243.38 µs 1.19
VampireH 28.16 µs 233.87 µs 1.19
Vampire∗D 25.38 µs 1241.86 µs 1.32
Vampire∗I 24.93 µs 196.38 µs 1.35
Vampire∗H 24.73 µs 190.69 µs 1.36

Table: Average time spent in the forward simplify loop.
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Overfitting?

Not likely!

The model is simple;

The dataset is large;

The feature space is small.

In any case...

We want to solve problems from TPTP, generalisation is not our main goal.
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SAT-Based Subsumption Resolution

Input (S ,M)

Prune (S ,M)

FAIL

yes

Π = MatchSet (S ,M)

no

Choose(S ,M,Π)

kept

FAIL

pruned

ϕ = EdSR (Π)

direct

ϕ = E iSR (Π)

indirect

solver(ϕ)

FAIL

unsat

M∗ = Interpret (I )

sat

return M∗
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Cutting off Difficult Instances?
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Success rate of direct SR with respect to difficulty
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Computation Saved

100 102 104 106 108

Cutoff

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

SAT instances lost
Ticks saved
cutoff = 150
35.0% ticks saved
0.44% SAT instances lost
cutoff = 5000
11.0% ticks saved
0.012% SAT instances lost

Computation saved with direct SR with respect to difficulty threshold

Efficient Heuristic for SAT-Based (Variants of) Subsumption 36 / 37



Performance on TPTP

Prover Total Solved Gain/Loss
VampireM 10 728 baseline
VampireD 10 762 (+62, −28)
VampireI 10 760 (+63, −31)
VampireH 10 764 (+64, −28)
Vampire∗D 10 791 (+94, −31)
Vampire∗I 10 785 (+92, −35)
Vampire∗H 10 794 (+97, −31)
Vampire–cutoff-5000∗H 10 790 (+97, −35)
Vampire–cutoff-150∗H 10 768 (+93, −53)

Table: Number of TPTP problems solved by the considered versions of Vampire. The run was made
using the options -sa otter -av off with a timeout of 60 s. The Gain/Loss column reports the
difference of solved instances compared to VampireM .
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