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Introduction

Related work
@ First-Order Subsumption via SAT solving [Rath et al., 2022],
@ SAT-based Subsumption Resolution [Coutelier et al., 2023],
@ SAT Solving for Variants of First-Order Subsumption [Coutelier et al., 2024].
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Saturation in FOL Theorem Proving
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Saturation in FOL Theorem Proving

Out of memory! )
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Subsumption

Definition
A clause S subsumes a distinct clause M iff there is a substitution o such that

o(S)C M
where C is the sub-multiset inclusion relation. )
If S subsumes M, then M is redundant and can be removed from the formula. )
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Subsumption - Examples

Example (propositional logic)

S=aVvb
M=aVvVbVc

S subsumes M. It is “stronger” than M.
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Subsumption - Examples
Example (propositional logic)

S=aVvb
M=aVvVbVc

S subsumes M. It is “stronger” than M.

Example (FOL)

S = plxi, x2) V p(f(x2), x3)
M = —p(f(c),d) v p(f(y),c) vV p(f(c), g(d))

S subsumes M with the substitution o = {x1 > f(y), x> — ¢, x3 — g(d)}.
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Subsumption - Intuition

ONC) NG

subsumes(S,M)

) &)
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Subsumption Resolution

Resolution (Simplified)

S*vs —o(s") v M*
o(5%) v M*
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Subsumption Resolution

Resolution (Simplified)

S*vs —o(s") v M*
o(5%) v M*

Definition
Clauses M and S are said to be the main and side premise of subsumption resolution,
respectively, iff there is a substitution o, a set of literals S’ C S and a literal m’ € M such that

o(S'y={-m'} and o(S\S)C M\ {m'}.

Subsumption Resolution aims to remove a literal from the main premise.

Efficient Heuristic for SAT-Based (Variants of) Subsumption




Subsumption Resolution - Example 1

Example (propositional logic)
S:=[a]vb M:=[-a]VbVc
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the clause set.
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Subsumption Resolution - Example 1

Example (propositional logic)
S:=[a]Vvb M = Ve
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the clause set.
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Subsumption Resolution - Example 2

Example (FOL)

S = p(xa,x) V p(f(x2), x3)
M = =p(f(y),d) v p(g(y).c) vV =p(f(c),e)
o={x1+— g(y),x2— c,x3— e}
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Subsumption Resolution - Example 2

Example (FOL)

S = p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), c) V =p(f(c), e)
o={x1— g(y),x2— c,x3— e}

p(x1, x2) V p(f(x2), x3)
p(g(y),c) V|p(f(c),e) —p(f(y),d) Vv p(g(y),c) V| =p(f(c),e)
M* .= =p(f(y),d) vV p(g(y),c)
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Subsumption Resolution - Example 2

Example (FOL)

S = p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), c) V =p(f(c), e)
o={x1— g(y),x2— c,x3— e}

p(x1, x2) V p(f(x2), x3)
p(g(y),c) V|p(f(c),e) —p(f(y),d) v ; =p(f(c),e)
M* = _‘p(T(.y/)’ d) \ p(g(y)’ C)
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Subsumption Resolution - Intuition

IG\EN(ONG

M= SR(S,M)

) &)
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Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544. §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

Efficient Heuristic for SAT-Based (Variants of) Subsumption



Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544. §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30

4918. $ false

% Termination reason: Refutation
% Memory used [KB]: 12025

% Time elapsed: 0.150 s
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Relevance of Speed

Flame Graph

| Indexing.. @

Inferences::ForwardSubsumptionAndResolution::perform
Saturation::SaturationAlgorithm::forwardSimplify

Figure: Typical profiling results for a TPTP problem (GRP001+6).
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SAT-Based Subsumption Resolution

‘ Input (S, M) ‘
)
‘ Prune (S, M) ‘
FAIL | [N = MatchSet (S, M)]
pruned kept
| FAIL Ll e=&x (M) |
1
‘ solver(¢) ‘

un&}/ \%t

| FAIL | [ M = Interpret (1) |

‘ return M* ‘
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SAT-Based Subsumption Resolution

‘ Input (S, M) ‘
{
| Prune (S, M) |
FAIL | [N = MatchSet (S, M)]
prunV kept
| FAIL Ll e=&x (M) |
{
‘ solver(¢) ‘
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Multi-Step Pruning — (multi-)set check

{(P(s1).Q(s1)) | si € S} E {(P(m;), Q(m})) | mj € M} (1)
Theorem (Pruning Subsumption)
If the pruning criterion (1) is unsat, then S does not subsume M. J
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Multi-Step Pruning — (multi-)set check

{(P(s1), Q(s))) | si € S} E {(P(m)), Q(m))) | m; € M} (1)
Theorem (Pruning Subsumption)

If the pruning criterion (1) is unsat, then S does not subsume M.

{P(s) | s € S} < {P(my) | m; € M} 2)

Theorem (Pruning Subsumption Resolution)

If the pruning criterion (2) is unsat, then S and M are not side and main premises of
subsumption resolution.
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Multi-Step Pruning — (multi-)set check

{(P(si),Q(si)) | si € S} E {(P(m;), Q(my)) | mj € M} (1)
Theorem (Pruning Subsumption)

If the pruning criterion (1) is unsat, then S does not subsume M.

{P(S,‘) ‘ S| € 5} - {P(mj) ‘ mj S M} (2)
Theorem

Validity of the subsumption pruning criterion (1) implies validity of the subsumption resolution
pruning criterion (2).
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Previous Implementation

N < number of predicate symbols
procedure pruneSubsumption(S, M)
A < zeros(2 - N)
for me M do

idx <— HEADERINDEX(m)
| Alidx] < max(0, Alidx]) + 1
for s € S do

idx <— HEADERINDEX(s)

if Alidx] <0 then

L return T
| Alidx] < Alidx] — 1
L return |
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Previous Implementation

N < number of predicate symbols
procedure pruneSubsumption(S, M)
A + zeros(2 - N)
for me M do

idx <— HEADERINDEX(m)
| Alidx] < max(0, Alidx]) + 1
for s € S do

idx <— HEADERINDEX(s)

if Alidx] <0 then

L return T
| Alidx] < Alidx] — 1
L return |
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Fast Implementation

N < number of predicate symbols
t < 0, A < zeros(2- N)
procedure pruneSubsumption(S, M)
if t+|M| > UINT_MAX then

| t< 0, A<« zeros(2- N)
for me M do
idx <~ HEADERINDEX(m)
| Alidx] < max(t, Alidx]) + 1
for s€ S do

idx <— HEADERINDEX(s)
if Alidx] <t then

| t<t+|M| return T
| Alidx] < Alidx] — 1
|t t+|[M], return L
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Variance Drop Explanation

Prover

Average Std. Dev. Boost

VAMPIRE
VAMPIRE;
VAMPIRE]

42.63us  1609.06 us  1.00
40.13 s 1554.52pus  1.06
34.55us  250.25us  1.23

Table: Without Pruning Optimization

Prover

Average  Std. Dev. Boost

VAMPIRE
VAMPIRE;
VAMPIRE]

33.63 s 1839.25 us 1.00
28.36 us  243.38 us 1.19
2493 s 196.38 s 1.35

Table:

With Pruning Optimization
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SAT-Based Subsumption Resolution

‘ Input (S, M) ‘
)
‘ Prune (S, M) ‘
FAIL | [ = MatchSet (5, )]
pruned kept
| FAIL Ll e=&x (M) |
1
‘ solver(¢) ‘

unia// \%t

| FAIL | [ M = Interpret (1) |

‘ return M* ‘
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Match Set

Incompatible Substitution

The Incompatible Substitution % is a substitution that is incompatible with all substitutions. If
two literals s; and m; are not unifiable, then Y is the only substitution that can be applied to
s; to make it equal to m;. y y

Z(S;) =m;V Z(S,') = mj

Definition
The match set of S and M is the set of pairs (b?—jj7 Zi) such that b?—;. is a propositional
variables and Z?—LJ is a substitution such that Z?;i(s,-) =mj and X (s;) = ~m;.
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Multi-Step Pruning — After Building the Match Set
Vidj. 55 A% (3)
Theorem (Substitution Sets for Pruning Subsumption)

Let (S, M) = {(bfz., Zi)} be the match set of S and M. If (3) is unsat, then S does not
subsume M.
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Multi-Step Pruning — After Building the Match Set
Vidj. o # )N (3)

Theorem (Substitution Sets for Pruning Subsumption)

Let (S, M) = {(bffj, Zi)} be the match set of S and M. If (3) is unsat, then S does not
subsume M.

Vidj. S A VE £E (4)
Theorem (Substitution Sets for Pruning Subsumption Resolution)

Let N(S, M) = {(b?—;, ij)} be the match set of S, M. If (4) is unsat, then S and M are not
side and main premises of subsumption resolution.
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Multi-Step Pruning — After Building the Match Set

Viii' (i) = (P(si) =Plsi) VI T A2V T #%)

Theorem (Predicate Matches for Pruning Subsumption Resolution)

Let TI(S, M) = {(b,-ljj, Zi)} be the match set of S, M. If (5) is unsat, then S and M are not

side and main premises of subsumption resolution.

(5)

Example

Let S = —p(x) V g(x) and M = p(a) V —q(a). There are two literals in S that only match
negatively to literals in M, with a different predicate. Therefore, subsumption resolution is
impossible.

v
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SAT-Based Subsumption Resolution

- Input (S, M) |
| Prune¢(5, M) |
FAIL | |1 = MatchSet (S, M) |
pruned ept
| FAIL BRSO

‘ solver(¢) ‘

unia// \%t

| FAIL | [ M = Interpret (1) |

‘ return M* ‘
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Two Encodings
Indirect Encoding &l (M)
Direct Encoding £& (1)
positive compatibility /\ /\ (bf; =>xhc a)
positive compatibility /\ /\ (bz = ):,'.Z- C (r) P
i negative compatibility /\ /\ (bl’d =3 C o‘)
negative compatibility /\ /\ (b,’d = ):,’J C a) i
i

Ve structurality A [ v vb,-;} MAN (o v -8)
j i joi

. . . revised existence \/ ¢

uniqueness /\/\/\ /\ b \Y, b v j

i i>ij>j

completeness /\v b+ Vb, revised uniqueness AMO({¢j,j = 1,...,|M[})
completeness /\ \/ bJr Vv b;;
coherence /\ /\ /\ ﬂbu vV =by
joi revised coherence /\ /\ (—\cj Vv —\b?'J.)
Joi
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Two Encodings
Indirect Encoding &l (M)
Direct Encoding £&(IT)
positive compatibility /\ /\ (bf; = )foj - a)
positive compatibility /\ /\ (b+ = ):;tl C (r) i
! negative compatibility A /\ (b,; =¥ C a)
negative compatibility /\ /\ (b,’d = ):,’J C a) i
i

Ve structurality A [ v vbg} MAN (o v -8)
j i joi

. . . revised existence \/ ¢

uniqueness /\/\/\ /\ b \Y, b v j

Joiizij>j
completeness /\v b+ Vb, revised uniqueness AMO({¢j,j = 1,...,|M[})
completeness /\ \/ bJr Vv b;;
coherence /\ /\ /\ ﬂbu vV =by
joi revised coherence /\ /\ (—\cj —\b;*'d.)
Jjoi

Complexities

o £ (M) has O(|M|) variables and O(|M|?) clauses.
o EL(M) has O(|M| + |M]) variables and O(|M|) clauses.
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Choosing the Encoding

Prune (S, M)

FAIL | [N = MatchSet (S, M)
N
| FAIL | [ Choose(s, M) \
| o= || so=gm |

FAIL ‘ ‘ M* = Interpret (/) ‘

Efficient Heuristic for SAT-Based (Variants of) Subsumption



Choosing the Encoding

Prune (S, M)

FAIL | [N = MatchSet (S, M)
pruny wpt
| FAIL | [ Choose(s, m.1)
dire‘g/ \\filrect
‘ ¢ = 8§R (M ‘ ¢ = gsn (M ‘

FAIL ‘ ‘ M* = Interpret (/) ‘
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Choosing Features

The features should be
o fast to compute;
@ informative;

@ independent.
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Choosing Features

The features should be
o fast to compute;
@ informative;

@ independent.

@ Number of literals of S;
@ Number of literals of M;
© Sparsity of the match set |s|| |,|V,|
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Choosing the Architecture

What do we want?

We want a model that is
o fast to compute;
o generalisable;
@ interpretable;

@ easy to train.
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Choosing the Architecture

What do we want?

We want a model that is
o fast to compute;
o generalisable;
@ interpretable;

@ easy to train.

Decision Trees are (almost) perfect
@ can be hard coded in a few lines;
@ not prone to overfitting;

@ can be visualised:;

@ ... but cannot easily be trained online ...
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Big Dataset without Online Learning

Objective function

argminE o Ye(x
FERE i 700
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Big Dataset without Online Learning

Objective function

argminE o Ye(x
FERE i 700

What if the dataset cannot be loaded in memory?
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Big Dataset without Online Learning

Objective function

argminE o Ye(x
R i 100

What if the dataset cannot be loaded in memory?

Revised objective function

We condense de dataset {(x, yo,y1)} into S = {(x, Yo, y1)} where J is the sum of the yp with
the same x and y; is the sum of the y; with the same x. Then we have
. A~ A N A 2
argmin >" [150— 51l + (F(x) = H(o — 1))?]
(x.50,91)€S

with H the step function
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Setting Model Complexity

Advantage over the ideal predictor

1.000 A

0.995

0.990 A

—=—- Baseline indirect

Advantage
o
©
[o2]
wv
)

—— Validation
0.980 -
0.975 -
B s -
2 4 6 8 10 12 12 By

Tree depth

Efficient Heuristic for SAT-Based (Variants of) Subsumption



Final Tree
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Performance of the Simplification Loop

Prover Average Std. Dev. | Boost
VAMPIREp, | 33.63 us 1839.25 us 1.00
VAMPIREp | 28.74 us 1245.88 us 1.17
VAMPIRE; | 28.36 us  243.38 us 1.19
VAMPIREy | 28.16 us  233.87 us 1.19
VAMPIRE}, | 25.38 us 1241.86 us 1.32
VAMPIRE] | 24.93 us  196.38 us 1.35
VAMPIRE}, | 24.73 ps  190.69 us 1.36

Table: Average time spent in the forward simplify loop.
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Overfitting?

Not likely!
@ The model is simple;
@ The dataset is large;

@ The feature space is small.
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Overfitting?

Not likely!
@ The model is simple;
@ The dataset is large;

@ The feature space is small.

In any case...
We want to solve problems from TPTP, generalisation is not our main goal.
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SAT-Based Subsumption Resolution

Prune (S, M)

FAIL \ \n: MatchSet (S, M)\
mnes” e
| FAIL | [ Choose(s, m.M) |
dirs?/ \JQAdirect
| o= || so=gm |

FAIL ‘ ‘ M* = Interpret (/) ‘
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Cutting off Difficult Instances?

Success rate

Iy
o
s

Success Rate
o
w
|

0.0 1
T T T T T T T T T
10° 10t 102 103 104 10° 10° 107 108
Ticks
” Density distribution of tries and successes
[
g 108 —— Total number of instances
z, —— Number of successes
5 10° 4
g 102 4
€
E
P4 T T T T T T T T
10° 10! 10? 10° 104 10° 10° 107 108
Ticks

Success rate of direct SR with respect to difficulty
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Computation Saved

10°
10 \
1072
1073
107*
1054 SAT instances lost
Ticks saved
- cutoff = 150
35.0% ticks saved
0.44% SAT instances lost
- cutoff = 5000
11.0% ticks saved
m  0.012% SAT instances lost
10° 102 10* 10° 108
Cutoff

Computation saved with direct SR with respect to difficulty threshold
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Performance on TPTP

Prover Total Solved Gain/Loss
VAMPIRE 10728 baseline

VAMPIREp 10762 (+62, —28)
VAMPIRE;, 10760 (+63, —31)
VAMPIRE 10764 (+64, —28)
VAMPIRE], 10791 (+94, —31)
VAMPIRE] 10785 (+92, —35)
VAMPIRE}, 10794 (497, —31)
VAMPIRE—cutoff-50007, 10790 (+97, —35)
VAMPIRE—cutoff-1507, 10768 (+93, —53)

Table: Number of TPTP problems solved by the considered versions of VAMPIRE. The run was made
using the options -sa otter -av off with a timeout of 60s. The Gain/Loss column reports the
difference of solved instances compared to VAMPIRE .
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