Laziness in Automated Reasoning

Robin Coutelier

TU Wien, Vienna, Austria robin.coutelier@tuwien.ac.at

January 9th 2025

About me

Resume

- 2018 2021: Bachelor in Engineering at ULiège
- 2021 2023: Masters in Computer Science & Engineering at ULiège
- Winter 2022: Internship at TU Wien
- October 2023 now: PhD at TU Wien

Research interests - Automated reasoning

- Propositional satisfiability (SAT)
- Satisfiability modulo theories (SMT)
- Saturation-based theorem proving (Vampire)

About me

Random Facts

- I speak Chinese and lived in China for a year
- I am Chess enthusiast
- I am a Game Master for Dungeons & Dragons
- I played the clarinet for many years
- ...

About me

Random Facts

- I speak Chinese and lived in China for a year
- I am Chess enthusiast
- I am a Game Master for Dungeons & Dragons
- I played the clarinet for many years
- ...
- I enjoy laziness

Trust

Do you trust automatic systems?

Trust

Do you trust automatic systems? Engineers never make mistakes, right?

Trust

Do you trust automatic systems? Engineers never make mistakes, right?

(a) Metro Line 14 in Paris - Fully automated

Trust

Do you trust automatic systems? Engineers never make mistakes, right?

(a) Metro Line 14 in Paris - Fully automated

(b) Pilotless planes?

Trust

Do you trust automatic systems? Engineers never make mistakes, right?

(a) Metro Line 14 in Paris - Fully automated

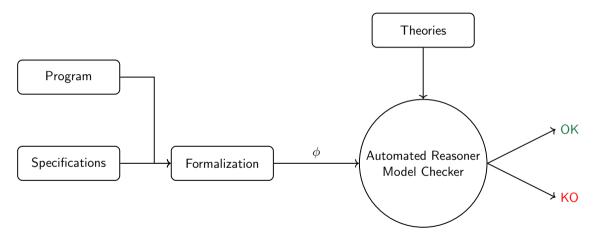
(b) Pilotless planes?

(c) Autonomous medical robots?

Trust

Do you trust automatic systems? Engineers never make mistakes, right?

(a) Metro Line 14 in Paris - Fully automated and verified


(b) Pilotless planes?

(c) Autonomous medical robots?

What is it was verified?

Verification Pipeline

Opinions on Laziness

Definition (Laziness)

the quality of not being willing to work or use any effort. (Cambridge Dictionary)

Opinions on Laziness

Definition (Laziness)

the quality of not being willing to work or use any effort. (Cambridge Dictionary)

Laziness is nothing more than the habit of resting before you get tired.

Jules Renard

Opinions on Laziness

Definition (Laziness)

the quality of not being willing to work or use any effort. (Cambridge Dictionary)

Laziness is nothing more than the habit of resting before you get tired.

Jules Renard

Laziness is the mother of all evil.

Sophocles

Laziness in Computer Science

Laziness is a programmer's best virtue.

Larry Wall

Laziness in Computer Science

Laziness is a programmer's best virtue.

Larry Wall

I choose a lazy person to do a hard job. Because a lazy person will find an easy way to do it.

Bill Gates

Laziness in Algorithms

Definition

An algorithm is lazy if it delays the computation of a value until that value is actually needed.

Laziness in Algorithms

Definition

An algorithm is lazy if it delays the computation of a value until that value is actually needed.

Is laziness a good strategy?

Is laziness a good strategy?

Well,... No

Is laziness a good strategy?

But sometimes,... Yes

Beautiful Properties of SAT Solving

Invariant (Backward compatible watched literals)

Consider the trail $\pi = \tau \cdot \omega$. For each clause $C \in F$ watched by the two distinct watched literals c_1, c_2 , we have $\neg c_1 \in \tau \Rightarrow [c_2 \in \pi \land \delta(c_2) \le \delta(c_1)]$.

Beautiful Properties of SAT Solving

4	9			1		3		
				7			9	
5					9		4	
	3	4				7		
		2	6					3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9			1		3		
				7			9	
5			$\mathbf{2_1}$		9		4	
	3	4				7		
		2	6					3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	
5			2_1		9		4	
	3	4				7		
		2	6					3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	
5			2_1	3 1	9		4	
	3	4				7		
		2	6					3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	
5			2_1	3_1	9		4	
	3	4	9 1			7		
		2	6					3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	
5			2_1	3_1	9		4	
	3	4	9_1			7		
		2	6		4 ₁			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	
5			2_1	3_1	9		4	
	3	4	9_1			7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	
5			2_1	3_1	9		4	
1_{2}	3	4	9_1			7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	2_{2}
5			2_1	3_1	9		4	
1_2	3	4	9_1			7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	2_2
5			2_1	3_1	9		4	
1_2	3	4	9_1		$\mathbf{5_3}$	7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	2_2
5			2_1	3_1	9		4	
1_2	3	4	9_1	$\mathbf{2_3}$	5_3	7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	2_2
5			2_1	3_1	9		4	
1_2	3	4	9_1	2_3	5_3	7		82
		2	6	83	41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	2_2
5			2_1	3_1	9		4	
1_2	3	4	9_1	2_3	5_3	7		82
		2	6	83	41			3
			1	83	7	2		
		8					2	5
6					8			1
	5			6				

4	9		81	1		3		
				7			9	2_{2}
5			2_1	3_1	9		4	
1_2	3	4	9_1			7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

Chronological Backtracking - Sudoku Example

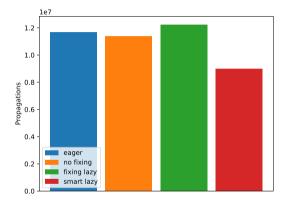
4	9		81	1		3		
				7			9	2_2
5			2_1	3_1	9		4	
1_2	3	4	9_1		$\mathbf{2_1}$	7		82
		2	6		41			3
			1		7	2		
		8					2	5
6					8			1
	5			6				

Lazy Restoration of Invariants (([Coutelier et al. SAT 2024])) Invariant (Lazy reimplication)

If the lazy reimplication reason $\lambda(\ell)$ of literal ℓ is defined, then the clause $\lambda(\ell)$ is a missed lower implication of ℓ . That is,

$$\lambda(\ell) \neq \blacksquare \implies \ell \in \pi \land \ell \in \lambda(\ell)$$
$$\land (\lambda(\ell) \setminus \{\ell\} \land \pi) \vDash \bot$$
$$\land \delta(\lambda(\ell) \setminus \{\ell\}) < \delta(\ell)$$

Invariant (Lazy backtrack compatible watched literals)


Consider the trail $\pi = \tau \cdot \omega$. For each clause $C \in F$ watched by the two distinct watched literals c_1, c_2 , we have

$$\neg c_1 \in \tau \Rightarrow \left(c_2 \in \pi \land \left(\delta(c_2) \le \delta(c_1) \lor \delta(\lambda(c_2) \setminus \{c_2\}) \le \delta(c_1) \right) \right)$$

Lazy Restoration of Invariants

Results ([Coutelier et al. SAT 2024])

Number of propagations performed by NapSAT on 100 random 3-SAT problems with 250 variables.

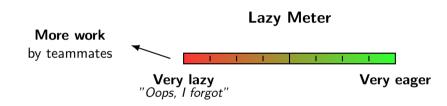
Laziness in Team Work

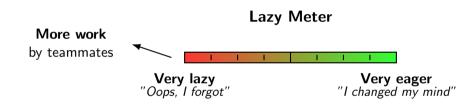
Lazy Meter

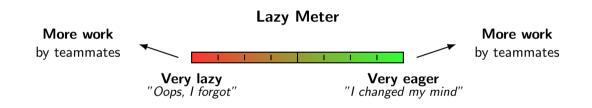
Laziness in Team Work

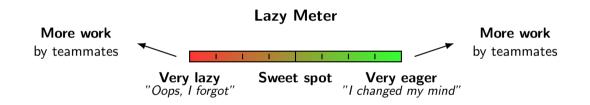
Lazy Meter

Very lazy


Laziness in Team Work


Lazy Meter




Very lazy "Oops, I forgot"

SAT-SMT Team Work

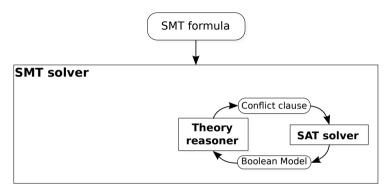


Figure: Schematic of a typical SMT solver.

ULiège-TU Wien Collaboration

Project

- **Goal**: Improve the efficiency of SAT and SMT solvers by using Chronological Backtracking.
- Partners: TU Wien, ULiège
- Duration: 3 years
- Funding: Fondation Gochet

Components and Functionalities of $\operatorname{MODULARIT}$

- $\bullet~\mathrm{NapSAT}$ SAT solver developed based on [Coutelier, Thesis 2024] (TU Wien)
- Congruence closure algorithm (ULiège)
- Term manager (ULiège)
- On going: Quantifier instantiation (ULiège)
- On going: Probability Reasoning (TU Wien)

Conclusion

- Automated Reasoning is an important field in Computer Science
- Laziness can be a good strategy if used correctly
- A lazy approach to invariant maintenance can improve SAT solvers

Future Work

- Analyze the impact of Chronological Backtracking on SMT solvers
- Search collaboration strategies between SAT and SMT solvers

Publication List

- Robin Coutelier. Chronological vs. Non-Chronological Backtracking in SMT. Master Thesis 2023.
- Robin Coutelier, Jakob Rath, Michael Rawson, and Laura Kovács. *SAT-Based Subsumption Resolution*. In CADE 2023.
- Robin Coutelier, Mathias Fleury, and Laura Kovács. *Lazy Reimplication in Chronological Backtracking*. In SAT 2024.
- Robin Coutelier. To Link or Not to Link? In PoS 2024.
- Robin Coutelier, Jakob Rath, Michael Rawson, Armin Biere, and Laura Kovács. SAT Solving for Variants of First-Order Subsumption. In FMSD 2024.