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Introduction

Related work
@ First-Order Subsumption via SAT solving [Rath et al., 2022],
@ SAT-based Subsumption Resolution [Coutelier et al., 2023],
@ SAT Solving for Variants of First-Order Subsumption [Coutelier et al., 2024].
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Saturation in FOL Theorem Proving
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Saturation in FOL Theorem Proving

Out of memory! )
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Subsumption

Definition
A clause S subsumes a distinct clause M iff there is a substitution o such that

o(S)C M
where C is the sub-multiset inclusion relation. )
If S subsumes M, then M is redundant and can be removed from the formula. )
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Subsumption - Examples

Example (propositional logic)

S=aVvb
M=aVvVbVc

S subsumes M. It is “stronger” than M.
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Subsumption - Examples
Example (propositional logic)

S=aVvb
M=aVvVbVc

S subsumes M. It is “stronger” than M.

Example (FOL)

S = plxi, x2) V p(f(x2), x3)
M = —p(f(c),d) v p(f(y),c) vV p(f(c), g(d))

S subsumes M with the substitution o = {x1 > f(y), x> — ¢, x3 — g(d)}.
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Subsumption - Intuition

ONC) NG

subsumes(S,M)

) &)
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Subsumption Resolution

Resolution (Simplified)

S*vs —o(s") v M*
o(5%) v M*
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Subsumption Resolution

Resolution (Simplified)

S*vs —o(s") v M*
o(5%) v M*

Definition
Clauses M and S are said to be the main and side premise of subsumption resolution,
respectively, iff there is a substitution o, a set of literals S’ C S and a literal m’ € M such that

o(S'y={-m'} and o(S\S)C M\ {m'}.

Subsumption Resolution aims to remove a literal from the main premise.
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Subsumption Resolution - Example 1

Example (propositional logic)
S:=[a]vb M:=[-a]VbVc
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the clause set.
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Subsumption Resolution - Example 1

Example (propositional logic)
S:=[a]Vvb M = Ve
M*:=bVc

—a is the resolution literal. M* subsumes M and can replace M in the clause set.
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Subsumption Resolution - Example 2

Example (FOL)

S = p(xa,x) V p(f(x2), x3)
M = =p(f(y),d) v p(g(y).c) vV =p(f(c),e)
o={x1+— g(y),x2— c,x3— e}
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Subsumption Resolution - Example 2

Example (FOL)

S = p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), c) V =p(f(c), e)
o={x1— g(y),x2— c,x3— e}

p(x1, x2) V p(f(x2), x3)
p(g(y),c) V|p(f(c),e) —p(f(y),d) Vv p(g(y),c) V| =p(f(c),e)
M* .= =p(f(y),d) vV p(g(y),c)
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Subsumption Resolution - Example 2

Example (FOL)

S = p(x1,x) V p(f(x2), x3)
M = —p(f(y),d) vV p(g(y), c) V =p(f(c), e)
o={x1— g(y),x2— c,x3— e}

p(x1, x2) V p(f(x2), x3)
p(g(y),c) V|p(f(c),e) —p(f(y),d) v ; =p(f(c),e)
M* = _‘p(T(.y/)’ d) \ p(g(y)’ C)
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Subsumption Resolution - Intuition

IG\EN(ONG

M= SR(S,M)

) &)
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Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544. §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s
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Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

132544. §$ false

% Termination reason: Refutation
% Memory used [KB]: 308054

% Time elapsed: 6.654 s

$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30

4918. $ false

% Termination reason: Refutation
% Memory used [KB]: 12025

% Time elapsed: 0.150 s
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Relevance of Speed

Flame Graph
|
| [ I
- Inde.
|Indexing.. |  Kernel::MatchingUt..
Indexing:..

Inferences::ForwardSubsumptionAndResolution::perform
Saturation::SaturationAlgorithm::forwardSimplify

Figure: Typical profiling results for a TPTP problem (GRP001+6).
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SAT-Based Subsumption Resolution

‘ Input (S, M) ‘

‘ Prune(S, M) ‘

> e

FAIL | [N = MatchSet(s, M)

pruned kept
| FAIL | e=Ex(s, M) |

‘ solver(¢) ‘

uns‘§/ \%At
| FAIL | [ M = nterpret(1) |
i
‘ return M* ‘
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Two Encodings

Direct Encoding £&(S. M)
positive compatibility /\ /\ (be >¥Thc 17)
negative compatibility /\ /\ (bi‘J = g a)
existence o \/ \/ by;
uniqueness /\/\ AN b \/ﬁb, y

i iziji>)
completeness /\ v b+ Vb

coherence /\ /\ /\ﬁbid- \ ﬁbiTJ
i
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Indirect Encoding £i(S, M)
positive compatibility /\/\ (b:rj = ZL. c 0)
i

negative compatibility /\/\ (b,'J = )Z,TJ [« a)
i

structurality /\ |:_\Cj \Y \/ b;} A /\ /\ (Cj \Y ﬂb,."/.)
j i joi

revised existence \/ G

revised uniqueness AMO({¢,j =1,...,|M|})

completeness /\ \/ bJr Vb

revised coherence /\ /\ (ﬁcj- \ ﬁbf:})
ji



Two Encodings

Indirect Encoding £i(S, M)
Direct Encoding £&%(S, M)
positive compatibility /\ /\ (b:rj = Z?Tj c U)
positive compatibility /\/\ (b; = Zl-t. C 17) i
i negative compatibility /\/\ (b,'J = )Z,TJ [« a)
negative compatibility /\/\ (b,‘d = ):i_J @ a) i
i

existence v v b structurality /\ {—\cj- \% v bfd} A /\ /\ (Cj v ﬂb,-’d-)
o i joi
i

J

uniqueness /\ /\ /\ /\ —b7;V =by revised existence \/ G
NMATAT L J
Joiirzij>j
completeness /\v bitj Vb, revised uniqueness AMO({¢,j =1,...,|M|})
A completeness AV b5 v by
coherence /\ /\ /\ﬁb,.*J- v -by P
i revised coherence /\ /\ (ﬁcj \Y ‘\b;fj)
joi

Complexities
o £%(S, M) has O(|N|) variables and O(|M|?) clauses.
o EL(S, M) has O(|M| + |M]) variables and O(|M|) clauses.
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Choosing the Encoding

Prune(S, M)

FAIL | [ = MatchSet(S, M) |
meg” i
| FAIL | [ Choose(s, M) \
| o=ggsm | | o=ghs M) |

FAIL ‘ ‘ M* = Interpret(/) ‘
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Choosing the Encoding

Prune(S, M)

FAIL | [ = MatchSet(S, M) |
neg” i
| FAIL | [ Choose(s, m.1) \
| o=ggsm | | o=ghs M) |

FAIL ‘ ‘ M* = Interpret(/) ‘
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Choosing Features

The features should be
o fast to compute;
@ informative;

@ independent.

Heuristic for Choosing SAT Encoding for Subsumption Resolution



Choosing Features

The features should be
o fast to compute;
@ informative;

@ independent.

@ Number of literals of S;
@ Number of literals of M;
© Sparsity of the match set |s|| |,|V,|
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Choosing the Architecture

What do we want?

We want a model that is
o fast to compute;
o generalisable;
@ interpretable;

@ easy to train.
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Choosing the Architecture

What do we want?

We want a model that is
o fast to compute;
o generalisable;
@ interpretable;

@ easy to train.

Decision Trees are (almost) perfect
@ can be hard coded in a few lines;
@ not prone to overfitting;

@ can be visualised:;

@ ... but cannot easily be trained online ...
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Big Dataset without Online Learning

Objective function

argminE o Ye(x
FERE i 700
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Big Dataset without Online Learning

Objective function

argminE o Ye(x
FERE i 700

What if the dataset cannot be loaded in memory?
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Big Dataset without Online Learning

Objective function

argminE o Ye(x
R i 100

What if the dataset cannot be loaded in memory?

Revised objective function

We condense de dataset {(x, yo,y1)} into S = {(x, Yo, y1)} where J is the sum of the yp with
the same x and y; is the sum of the y; with the same x. Then we have
. A~ A N A 2
argmin >" [150— 51l + (F(x) = H(o — 1))?]
(x.50,91)€S

with H the step function
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Setting Model Complexity

Advantage over the ideal predictor

1.000 A

0.995

0.990 A

—=—- Baseline indirect

Advantage
o
©
[o2]
wv
)

—— Validation
0.980 -
0.975 -
B s -
2 4 6 8 10 12 12 By

Tree depth

Heuristic for Choosing SAT Encoding for Subsumption Resolution



Final Tree
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Results (1/2)

Prover Average  Std. Dev. | Boost
VAMPIRE), | 33.63 us 1839.25 us 1.00
VAMPIRE}, | 25.38 pus 1241.86 us 1.32
VAMPIRE] | 2493 pus  196.38 us 1.35
VAMPIREY, | 24.73 us  190.69 us 1.36

Table: Average time spent in the forward simplify loop.
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Results (2/2)

Prover Total Solved Gain/Loss
VAMPIRE g 10728 baseline

VAMPIRE], 10791 (+94, —31)
VAMPIRE] 10785 (492, —35)
VAMPIRE], 10794 (497, —31)

Table: Number of TPTP problems solved by the considered versions of VAMPIRE. The run was made
using the options -sa otter -av off with a timeout of 60s. The Gain/Loss column reports the
difference of solved instances compared to VAMPIRE,.
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Overfitting?

Not likely!
@ The model is simple;
@ The dataset is large;

@ The feature space is small.
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Overfitting?

Not likely!
@ The model is simple;
@ The dataset is large;

@ The feature space is small.

In any case...
We want to solve problems from TPTP, generalisation is not our main goal.
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