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We thank Pascal Fontaine (University of Liège, Belgium) for fruitful discussions. We acknowledge
partial support from the ERC Consolidator Grant ARTIST 101002685, the FWF SFB project SpyCoDe
F8504, the Austrian FWF project W1255-N23, the WWTF ICT22-007 Grant ForSmart, and the TU
Wien Trustworthy Autonomous Cyber-Physical Systems Doctoral College. This research was funded in
whole or in part by the Austrian Science Fund (FWF) [10.55776/F85, 10.55776/W1255]. For open
access purposes, the author has applied a CC BY public copyright license to any author accepted
manuscript version arising from this submission. Initial results on this work have been established
during a research internship of Robin Coutelier at TU Wien, while he was still a master student at the
University of Liège, Belgium.
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2023-now: PhD student at TU Wien, Vienna, Austria.

Research Interests

Automated Theorem Proving (Vampire),

SAT solving (Chronological Backtracking, NapSAT),

Efficient data structures and algorithms in automated reasoning.

Heuristic for Choosing SAT Encoding for Subsumption Resolution 3 / 25



Who am I?

Curiculum Vitae

2017-2018: Study of Chinese language at Yunnan Normal University, Kunming, China,

2018-2021: Bachelor in Engineering, Computer Science and Mechanics at the University
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Introduction

Related work

First-Order Subsumption via SAT solving [Rath et al., 2022],

SAT-based Subsumption Resolution [Coutelier et al., 2023],

SAT Solving for Variants of First-Order Subsumption [Coutelier et al., 2024].
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Subsumption

Definition

A clause S subsumes a distinct clause M iff there is a substitution σ such that

σ(S) ⊑ M

where ⊑ is the sub-multiset inclusion relation.

If S subsumes M, then M is redundant and can be removed from the formula.
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Subsumption - Examples

Example (propositional logic)

S = a ∨ b

M = a ∨ b ∨ c

S subsumes M. It is “stronger” than M.

Example (FOL)

S = p(x1, x2) ∨ p(f (x2), x3)

M = ¬p(f (c), d) ∨ p(f (y), c) ∨ p(f (c), g(d))

S subsumes M with the substitution σ = {x1 7→ f (y), x2 7→ c , x3 7→ g(d)}.
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Subsumption - Intuition

F

C...

S

M

=========⇒
subsumes(S ,M)

F ′
C...

S
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Subsumption Resolution

Resolution (Simplified)

S∗ ∨ s ′ ¬σ(s ′) ∨M∗

σ(S∗) ∨M∗

Definition

Clauses M and S are said to be the main and side premise of subsumption resolution,
respectively, iff there is a substitution σ, a set of literals S ′ ⊆ S and a literal m′ ∈ M such that

σ(S ′) = {¬m′} and σ(S \ S ′) ⊆ M \ {m′}.

Subsumption Resolution aims to remove a literal from the main premise.
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Subsumption Resolution - Example 1

Example (propositional logic)

S := a ∨ b M := ¬a ∨ b ∨ c

M∗ := b ∨ c

¬a is the resolution literal. M∗ subsumes M and can replace M in the clause set.
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Subsumption Resolution - Example 2

Example (FOL)

S = p(x1, x2) ∨ p(f (x2), x3)

M = ¬p(f (y), d) ∨ p(g(y), c) ∨ ¬p(f (c), e)
σ = {x1 7→ g(y), x2 7→ c, x3 7→ e}
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Subsumption Resolution - Intuition

F

C...

S

M

=========⇒
M∗= SR(S ,M)

F ′
C...

S

M∗
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Importance of Redundancy Elimination

$ vampire Problems/GRP/GRP140-1.p -fsr off -t 30

...

132544. $ false

% Termination reason: Refutation

% Memory used [KB]: 308054

% Time elapsed: 6.654 s

------------------------------------------------------------

$ vampire Problems/GRP/GRP140-1.p -fsr on -t 30

...

4918. $ false

% Termination reason: Refutation

% Memory used [KB]: 12025

% Time elapsed: 0.150 s
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Relevance of Speed
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Figure: Typical profiling results for a TPTP problem (GRP001+6).
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SAT-Based Subsumption Resolution

Input (S ,M)

Prune(S ,M)

FAIL

yes

Π = MatchSet(S ,M)

no

ϕ = ESR(S ,M,Π)

kept

FAIL

pruned

solver(ϕ)

FAIL

unsat

M∗ = Interpret(I )

sat

return M∗
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Two Encodings

Direct Encoding Ed
SR(S ,M)

positive compatibility
∧
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∧
j
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Complexities

Ed
SR(S ,M) has O(|Π|) variables and O(|Π|2) clauses.

E i
SR(S ,M) has O(|Π|+ |M|) variables and O(|Π|) clauses.
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Choosing the Encoding

Input (S ,M)

Prune(S ,M)

FAIL

yes

Π = MatchSet(S ,M)

no

Choose(S ,M,Π)

kept

FAIL

pruned

ϕ = Ed
SR(S ,M)

direct

ϕ = E i
SR(S ,M)

indirect

solver(ϕ)

FAIL

unsat

M∗ = Interpret(I )

sat

return M∗
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Choosing Features

The features should be

fast to compute;

informative;

independent.

1 Number of literals of S ;

2 Number of literals of M;

3 Sparsity of the match set |Π|
|S |·|M| .
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Choosing the Architecture

What do we want?

We want a model that is

fast to compute;

generalisable;

interpretable;

easy to train.

Decision Trees are (almost) perfect

can be hard coded in a few lines;

not prone to overfitting;

can be visualised;

... but cannot easily be trained online ...
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Big Dataset without Online Learning

Objective function

argmin
f ∈F

E x∼X
(y0,y1)∼D(·|x)

[
yf (x)

]

What if the dataset cannot be loaded in memory?

Revised objective function

We condense de dataset {(x , y0, y1)} into S = {(x , ŷ0, ŷ1)} where ŷ0 is the sum of the y0 with
the same x and ŷ1 is the sum of the y1 with the same x . Then we have

argmin
f ∈F

∑
(x ,ŷ0,ŷ1)∈S

[
|ŷ0 − ŷ1| ∗ (f (x)− H(ŷ0 − ŷ1))

2
]

with H the step function
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2
]

with H the step function

Heuristic for Choosing SAT Encoding for Subsumption Resolution 20 / 25



Big Dataset without Online Learning

Objective function

argmin
f ∈F

E x∼X
(y0,y1)∼D(·|x)

[
yf (x)

]
What if the dataset cannot be loaded in memory?

Revised objective function

We condense de dataset {(x , y0, y1)} into S = {(x , ŷ0, ŷ1)} where ŷ0 is the sum of the y0 with
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Setting Model Complexity

2 4 6 8 10 12 14 16
Tree depth

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Ad
va

nt
ag

e

Advantage over the ideal predictor

Baseline indirect
Validation
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Final Tree

gini = 0.0
samples = 11

value = [0, 241948963690]
class = direct

gini = 0.493
samples = 40

value = [149569426282, 116991548725]
class = indirect

gini = 0.499
samples = 54

value = [1872552013, 1690538781]
class = indirect

gini = 0.01
samples = 628

value = [320092942989, 1669602248]
class = indirect

gini = 0.235
samples = 77

value = [14957260350, 94795959679]
class = direct

gini = 0.013
samples = 2086

value = [567156460708, 3622735285]
class = indirect

gini = 0.018
samples = 216636

value = [5669972037972, 53350726071]
class = indirect

gini = 0.34
samples = 1826

value = [36415912149, 10090521515]
class = indirect

sparsity <= 0.765
gini = 0.415

samples = 51
value = [149569426282, 358940512415]

class = direct

len(main premise) <= 1.5
gini = 0.02

samples = 682
value = [321965495002, 3360141029]

class = indirect

len(side premise) <= 3.5
gini = 0.247

samples = 2163
value = [582113721058, 98418694964]

class = indirect

sparsity <= 1.545
gini = 0.022

samples = 218462
value = [5706387950121, 63441247586]

class = indirect

len(side premise) <= 3.5
gini = 0.491

samples = 733
value = [471534921284, 362300653444]

class = indirect

len(main premise) <= 5.5
gini = 0.049

samples = 220625
value = [6288501671179, 161859942550]

class = indirect

len(main premise) <= 3.5
gini = 0.134

samples = 221358
value = [6760036592463, 524160595994]

class = indirect
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Results (1/2)

Prover Average Std. Dev. Boost

VampireM 33.63 µs 1839.25 µs 1.00
Vampire∗D 25.38 µs 1241.86 µs 1.32
Vampire∗I 24.93 µs 196.38 µs 1.35
Vampire∗H 24.73 µs 190.69 µs 1.36

Table: Average time spent in the forward simplify loop.
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Results (2/2)

Prover Total Solved Gain/Loss
VampireM 10 728 baseline
Vampire∗D 10 791 (+94, −31)
Vampire∗I 10 785 (+92, −35)
Vampire∗H 10 794 (+97, −31)

Table: Number of TPTP problems solved by the considered versions of Vampire. The run was made
using the options -sa otter -av off with a timeout of 60 s. The Gain/Loss column reports the
difference of solved instances compared to VampireM .
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Overfitting?

Not likely!

The model is simple;

The dataset is large;

The feature space is small.

In any case...

We want to solve problems from TPTP, generalisation is not our main goal.
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